Citation: WANG Xiao-Ya, CHENG Qian, HUANG Tao, YU Ai-Shui. Effect of Calcination Atmosphere on Li/Ni Disorder and Electrochemical Performance of Layered LiNi0.5Mn0.5O2[J]. Acta Physico-Chimica Sinica, ;2011, 27(02): 437-442. doi: 10.3866/PKU.WHXB20110239 shu

Effect of Calcination Atmosphere on Li/Ni Disorder and Electrochemical Performance of Layered LiNi0.5Mn0.5O2

  • Received Date: 23 October 2010
    Available Online: 13 January 2011

    Fund Project: 国家重点基础研究发展规划(973) (2009CB220100) (973) (2009CB220100) 国家高技术研究发展计划(863) (2009AA033701) (863) (2009AA033701)上海催化材料功能研究实验室(08DZ2270500)资助项目 (08DZ2270500)

  • Layered LiNi0.5Mn0.5O2 was synthesized by a solid state reaction method under air or oxygen atmosphere. The obtained materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), electrochemical impedance spectroscopy (EIS), and charge-discharge tests. The results show that the LiNi0.5Mn0.5O2 synthesized by the solid state reaction method under both air and oxygen atmospheres give a pure phase and od crystallinity, however, their electrochemical performance differs. The material synthesized under oxygen gives better electrochemical performance including a higher first discharge capacity and better cycle stability. At a rate of 0.1C the first discharge capacity of the material synthesized under oxygen was found to be 178 mAh·g-1. After 50 charge and discharge cycles the discharge capacity was still 165 mAh·g-1 giving a capacity retention rate of 92.7%. For the material synthesized under air, the first discharge capacity at a rate of 0.1C was found to be 164 mAh·g-1. After 50 charge and discharge cycles, the discharge capacity was 137 mAh·g-1 giving a capacity retention rate of 83.5%. The reason for the material synthesized under oxygen having better electrochemical performance than the material synthesized under air is due to the oxygen atmosphere suppressing the Li/Ni exchange ratio in LiNi0.5Mn0.5O2.

  • 加载中
    1. [1]

      (1) Scrosati, B. Electrochim. Acta 2000, 45, 2461.

    2. [2]

      (2) Ohzuku, T.; Makimura, Y. Chem. Lett. 2001, 8, 744.

    3. [3]

      (3) Sun, Y. K.; Bae, Y. C.; Myung, S. T. J. Appl. Electrochem. 2005, 35, 151.

    4. [4]

      (4) Zhou, Y. K.; Li, H. L. J. Mater. Chem. 2002, 12, 681.

    5. [5]

      (5) Kang, K. S.; Meng, Y. S.; Breger, J.; Grey, C. P.; Ceder, G. Science 2006, 311, 977.

    6. [6]

      (6) Ariyoshi, K.; Tomohiro, I.; Ohzuku, T. J. Phys. Chem. Solids 2008, 69, 1238.

    7. [7]

      (7) Kang, S. H.; Park, S. H.; Johnson, C. S.; Amine, K. J. Electrochem. Soc. 2007, 154, A268.

    8. [8]

      (8) Abdel, G. A.; Zaghib, K.; Gendron. F.; Mauger. A.; Julien, C. M. Electrochim. Acta 2007, 52, 4092.

    9. [9]

      (9) Yabuuchi, N.; Kumar, S.; Li, H. H.; Kim, Y. T. J. Electrochem. Soc. 2007, 154, A566.

    10. [10]

      (10) Islam, M. S.; Davies, R. A.; Gale, J. D. Chem. Mater. 2003, 22, 4280.

    11. [11]

      (11) Wu, Q.; Lu, X. Y.; Yan, M. M.; Jiang, Z. Y. Electrochem. Commun. 2003, 10, 878.

    12. [12]

      (12) Sun, Y. K.; Myung, S. T.; Kim, M. H.; Prakash, J.; Amine, K. J. Am. Chem. Soc. 2005, 38, 13411.

    13. [13]

      (13) Hwang, B. J.; Yu, T. H.; Cheng, M. Y., Santhanam, R. J. Mater. Chem. 2009, 19, 4536.

    14. [14]

      (14) Hinuma, Y.; Meng, Y. S.; Kang, K.; Ceder, G. Chem. Mater. 2007, 19, 1790.

    15. [15]

      (15) Yoshio, M.; Todorov, Y.; Yamato, K.; Noguchi, H.; Itoh, M. J.; Okada, M. T. J. Power Sources 1998, 74, 46.

    16. [16]

      (16) Park, S. H.; Sun, Y. K. Electrochim. Acta 2004, 50, 431.

    17. [17]

      (17) Ammundsen, B.; Paulsen, J. Adv. Mater. 2001, 13, 943.

    18. [18]

      (18) Makimura, Y.; Ohzuku, T. Journal of Power Sources 2003, 119-121, 156.

    19. [19]

      (19) Lu, Z. H.; Beaulieu, L. Y.; Donaberger, R. A.; Thomas, C. L.; Dahn, J. R. Journal of the Electrochemical Society 2002, 149, 778.

    20. [20]

      (20) Whittingham, M. S. Chem. Rev. 2004, 104, 4271.

    21. [21]

      (21) Lu, Z. H.; MacNeil, D. D.; Dahn, J. R. Electrochemical and Solid-State Letters 2001, 4, 200.

    22. [22]

      (22) Zhong, H.; Xu, H. Acta. Chim. Sin. 2004, 62, 1123.

    23. [23]

      [钟 辉, 许 惠. 化学学报, 2004, 62, 1123.]

    24. [24]

      (23) Lian, F.; Axmann, P.; Stinner, C.; Liu, Q. G.; Wohlfahrt, M. M. J. Appl. Electrochem. 2008, 38, 613.

    25. [25]

      (24) Liu, J. L.; Jiang, R. R.; Wang, X. Y.; Huang, T.; Yu, A. S. J. Power Sources 2009, 194, 536.

    26. [26]

      (25) Gao, F.; Tang, Z. Y. Electrochim. Acta 2008, 53, 5071.

    27. [27]

      (26) Liao, X. Z.; Ma, Z. F.; Qiang, G.; He, Y. S.; Li, P.; Zeng, L. J. Electrochem. Commun. 2008, 10, 691.


  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    3. [3]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    4. [4]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    5. [5]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    6. [6]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    7. [7]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    8. [8]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    9. [9]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    10. [10]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    11. [11]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    12. [12]

      Qingyan JIANGYanyong SHAChen CHENXiaojuan CHENWenlong LIUHao HUANGHongjiang LIUQi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004

    13. [13]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    14. [14]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    15. [15]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    16. [16]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

    17. [17]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    18. [18]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    19. [19]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    20. [20]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

Metrics
  • PDF Downloads(1517)
  • Abstract views(2700)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return