Citation:
WANG Xiao-Ya, CHENG Qian, HUANG Tao, YU Ai-Shui. Effect of Calcination Atmosphere on Li/Ni Disorder and Electrochemical Performance of Layered LiNi0.5Mn0.5O2[J]. Acta Physico-Chimica Sinica,
;2011, 27(02): 437-442.
doi:
10.3866/PKU.WHXB20110239
-
Layered LiNi0.5Mn0.5O2 was synthesized by a solid state reaction method under air or oxygen atmosphere. The obtained materials were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), electrochemical impedance spectroscopy (EIS), and charge-discharge tests. The results show that the LiNi0.5Mn0.5O2 synthesized by the solid state reaction method under both air and oxygen atmospheres give a pure phase and od crystallinity, however, their electrochemical performance differs. The material synthesized under oxygen gives better electrochemical performance including a higher first discharge capacity and better cycle stability. At a rate of 0.1C the first discharge capacity of the material synthesized under oxygen was found to be 178 mAh·g-1. After 50 charge and discharge cycles the discharge capacity was still 165 mAh·g-1 giving a capacity retention rate of 92.7%. For the material synthesized under air, the first discharge capacity at a rate of 0.1C was found to be 164 mAh·g-1. After 50 charge and discharge cycles, the discharge capacity was 137 mAh·g-1 giving a capacity retention rate of 83.5%. The reason for the material synthesized under oxygen having better electrochemical performance than the material synthesized under air is due to the oxygen atmosphere suppressing the Li/Ni exchange ratio in LiNi0.5Mn0.5O2.
-
-
-
[1]
(1) Scrosati, B. Electrochim. Acta 2000, 45, 2461.
-
[2]
(2) Ohzuku, T.; Makimura, Y. Chem. Lett. 2001, 8, 744.
-
[3]
(3) Sun, Y. K.; Bae, Y. C.; Myung, S. T. J. Appl. Electrochem. 2005, 35, 151.
-
[4]
(4) Zhou, Y. K.; Li, H. L. J. Mater. Chem. 2002, 12, 681.
-
[5]
(5) Kang, K. S.; Meng, Y. S.; Breger, J.; Grey, C. P.; Ceder, G. Science 2006, 311, 977.
-
[6]
(6) Ariyoshi, K.; Tomohiro, I.; Ohzuku, T. J. Phys. Chem. Solids 2008, 69, 1238.
-
[7]
(7) Kang, S. H.; Park, S. H.; Johnson, C. S.; Amine, K. J. Electrochem. Soc. 2007, 154, A268.
-
[8]
(8) Abdel, G. A.; Zaghib, K.; Gendron. F.; Mauger. A.; Julien, C. M. Electrochim. Acta 2007, 52, 4092.
-
[9]
(9) Yabuuchi, N.; Kumar, S.; Li, H. H.; Kim, Y. T. J. Electrochem. Soc. 2007, 154, A566.
-
[10]
(10) Islam, M. S.; Davies, R. A.; Gale, J. D. Chem. Mater. 2003, 22, 4280.
-
[11]
(11) Wu, Q.; Lu, X. Y.; Yan, M. M.; Jiang, Z. Y. Electrochem. Commun. 2003, 10, 878.
-
[12]
(12) Sun, Y. K.; Myung, S. T.; Kim, M. H.; Prakash, J.; Amine, K. J. Am. Chem. Soc. 2005, 38, 13411.
-
[13]
(13) Hwang, B. J.; Yu, T. H.; Cheng, M. Y., Santhanam, R. J. Mater. Chem. 2009, 19, 4536.
-
[14]
(14) Hinuma, Y.; Meng, Y. S.; Kang, K.; Ceder, G. Chem. Mater. 2007, 19, 1790.
-
[15]
(15) Yoshio, M.; Todorov, Y.; Yamato, K.; Noguchi, H.; Itoh, M. J.; Okada, M. T. J. Power Sources 1998, 74, 46.
-
[16]
(16) Park, S. H.; Sun, Y. K. Electrochim. Acta 2004, 50, 431.
-
[17]
(17) Ammundsen, B.; Paulsen, J. Adv. Mater. 2001, 13, 943.
-
[18]
(18) Makimura, Y.; Ohzuku, T. Journal of Power Sources 2003, 119-121, 156.
-
[19]
(19) Lu, Z. H.; Beaulieu, L. Y.; Donaberger, R. A.; Thomas, C. L.; Dahn, J. R. Journal of the Electrochemical Society 2002, 149, 778.
-
[20]
(20) Whittingham, M. S. Chem. Rev. 2004, 104, 4271.
-
[21]
(21) Lu, Z. H.; MacNeil, D. D.; Dahn, J. R. Electrochemical and Solid-State Letters 2001, 4, 200.
-
[22]
(22) Zhong, H.; Xu, H. Acta. Chim. Sin. 2004, 62, 1123.
-
[23]
[钟 辉, 许 惠. 化学学报, 2004, 62, 1123.]
-
[24]
(23) Lian, F.; Axmann, P.; Stinner, C.; Liu, Q. G.; Wohlfahrt, M. M. J. Appl. Electrochem. 2008, 38, 613.
-
[25]
(24) Liu, J. L.; Jiang, R. R.; Wang, X. Y.; Huang, T.; Yu, A. S. J. Power Sources 2009, 194, 536.
-
[26]
(25) Gao, F.; Tang, Z. Y. Electrochim. Acta 2008, 53, 5071.
-
[27]
(26) Liao, X. Z.; Ma, Z. F.; Qiang, G.; He, Y. S.; Li, P.; Zeng, L. J. Electrochem. Commun. 2008, 10, 691.
-
[1]
-
-
-
[1]
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
-
[2]
Jianbao Mei , Bei Li , Shu Zhang , Dongdong Xiao , Pu Hu , Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023
-
[3]
Pengyang FAN , Shan FAN , Qinjin DAI , Xiaoying ZHENG , Wei DONG , Mengxue WANG , Xiaoxiao HUANG , Yong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339
-
[4]
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014
-
[5]
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
-
[6]
Siyu Zhang , Kunhong Gu , Bing'an Lu , Junwei Han , Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028
-
[7]
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
-
[8]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[9]
Jiaxuan Zuo , Kun Zhang , Jing Wang , Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042
-
[10]
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
-
[11]
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
-
[12]
Hengyi ZHU , Liyun JU , Haoyue ZHANG , Jiaxin DU , Yutong XIE , Li SONG , Yachao JIN , Mingdao ZHANG . Efficient regeneration of waste LiNi0.5Co0.2Mn0.3O2 cathode toward high-performance Li-ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 625-638. doi: 10.11862/CJIC.20240358
-
[13]
Yifeng Xu , Jiquan Liu , Bin Cui , Yan Li , Gang Xie , Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009
-
[14]
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007
-
[15]
Zhenming Xu , Mingbo Zheng , Zhenhui Liu , Duo Chen , Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022
-
[16]
Junke LIU , Kungui ZHENG , Wenjing SUN , Gaoyang BAI , Guodong BAI , Zuwei YIN , Yao ZHOU , Juntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189
-
[17]
Ru SONG , Biao WANG , Chunling LU , Bingbing NIU , Dongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397
-
[18]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[19]
Qingyan JIANG , Yanyong SHA , Chen CHEN , Xiaojuan CHEN , Wenlong LIU , Hao HUANG , Hongjiang LIU , Qi LIU . Constructing a one-dimensional Cu-coordination polymer-based cathode material for Li-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 657-668. doi: 10.11862/CJIC.20240004
-
[20]
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
-
[1]
Metrics
- PDF Downloads(1517)
- Abstract views(2776)
- HTML views(37)