Citation: LIU Jia, YANG Hao-Tian, ZHANG Jing-Bo, ZHOU Xiao-Wen, LIN Yuan. Room Temperature Synthesis of Rutile TiO2 and Its Application in Dye-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinica, ;2011, 27(02): 408-412. doi: 10.3866/PKU.WHXB20110237 shu

Room Temperature Synthesis of Rutile TiO2 and Its Application in Dye-Sensitized Solar Cells

  • Received Date: 15 October 2010
    Available Online: 12 January 2011

    Fund Project: 国家重点基础研究发展规划项目(973) (2006CB202605) (973) (2006CB202605) 国家高技术研究发展规划(863)(2007AA05Z439) (863)(2007AA05Z439)国家自然科学基金(20973183)资助 (20973183)

  • We prepared rutile TiO2 powders of od crystallinity by hydrolyzing a Ti(OC4H9)4 precursor at room temperature and by reprecipitation. X-ray diffraction (XRD) revealed that higher acidity, lower temperature, and specific amounts of Cl- as a medium result in rutile TiO2. This rutile TiO2 has an irregular rice-like structure. After adding the P105 (EO37PO56EO37) tri-block copolymer as a structural agent, the rutile TiO2 aggregated to form rough 350 nm spheres. These rough spheres have a greatly enhanced light harvesting efficiency and improved energy conversion efficiency in dye-sensitized solar cells. This is due to their high light scattering effect and larger surface area (109.5 m2·g-1). By adding these large rutile spheres at a mass fraction of 25% to the over-layer of a TiO2 film composed of ~20 nm TiO2 particles as light scattering centers, the energy conversion efficiency of the dye-sensitized solar cells (DSSC) was 7.27%. This is a 17% increase in conversation efficiency compared with the DSSC based on a TiO2 photoanode without these rough rutile spheres.

  • 加载中
    1. [1]

      (1) Carp, O.; Huisman, C. L.; Reller, A. Prog. Solid State Chem. 2004, 32, 33.

    2. [2]

      (2) Linsebigler, A. L.; Lu, G. Q.; Yates, J. T. Chem. Rev. 1995, 95, 735.

    3. [3]

      (3) Diebold, U. Surf. Sci. Rep. 2003, 48, 53.

    4. [4]

      (4) Cao, Y. Q.; Long, H. J.; Chen, Y. M.; Cao, Y. Acta Phys. -Chim. Sin. 2009, 25, 1088.

    5. [5]

      [曹永强, 龙绘锦, 陈咏梅, 曹亚安. 物理化学学报, 2009, 25, 1088.]

    6. [6]

      (5) Gribb, A. A.; Banfield, J. F. Am. Mineral. 1997, 82, 717.

    7. [7]

      (6) Park, N. G.; van de Lagemaat, J. J. Phys. Chem. B 2000, 104, 8989.

    8. [8]

      (7) Eiji, H.; Shinobu, F.; Keita, K.; Hiroaki, I. J. Am. Chem. Soc. 2004, 126, 7790.

    9. [9]

      (8) Terabe, K.; Kato, K.; Miyazaki, H.; Yamaguchi, S.; Imai, A.; Iguchi, Y. J. Mater. Sci. 1994, 29, 1617.

    10. [10]

      (9) Slunecko, J.; Kosec, M.; Holc, J.; Drazic, G. J. J. Am. Ceram. Soc. 1998, 81, 1121.

    11. [11]

      (10) Zhao, W. K.; Fang, Y. L.; Dong, Q. H. Acta Phys. -Chim. Sin. 1998, 14, 424.

    12. [12]

      [赵文宽, 方佑龄, 董庆华. 物理化学学报, 1998, 14, 424.]

    13. [13]

      (11) Yin, S.; Hasegawa, H.; Sato, T. Chem. Lett. 2002, 15, 564.

    14. [14]

      (12) Wang, C. C.; Ying, J. Y. Chem. Mater. 1999, 11, 3113.

    15. [15]

      (13) Fang, J. X.; Ding, B. J.; Yang, Z. M. Solid State Phenom. 2007, 121-123, 311.

    16. [16]

      (14) Bao, X. W.; Zhang, J. L.; Liang, X. H.; Huang, J. Z., Zhang, L. Z. Acta Phys. -Chim. Sin. 2005, 21, 69.

    17. [17]

      [鲍兴旺, 张金龙, 梁学海, 黄家祯, 张利中. 物理化学学报, 2005, 21, 69.]

    18. [18]

      (15) Zhao, W. K.; Fang, Y. L. Acta Phys. -Chim. Sin. 2002, 18, 368.

    19. [19]

      [赵文宽, 方佑龄. 物理化学学报, 2002, 18, 368.]

    20. [20]

      (16) Wu, L. Z.; Zhi, J. F. Acta Phys. -Chim. Sin. 2007, 23, 1173.

    21. [21]

      [吴良专, 只金芳. 物理化学学报, 2007, 23, 1173.]

    22. [22]

      (17) Sarmimala, H.; Carmen, V.; Rainer, K.; Herman, S.; Andreas, H. Solar Energy Materials & Solar Cells 2006, 90, 1176.

    23. [23]

      (18) Liu, J.; Yang, H. T.; Tan, W. W.; Zhou, X. W.; Lin, Y. Electrochim. Acta 2010, 56, 396.

    24. [24]

      (19) Zhou, Y. F.; Xiang, W. C.; Chen, S.; Fang, S. B.; Zhou, X. W.; Zhang, J. B.; Lin, Y. Chem. Commun. 2009, No. 26, 3895.

    25. [25]

      (20) Xiang, W. C.; Zhou, Y. F.; Yin, X.; Zhou, X. W.; Fang, S. B.; Lin, Y. Electrochim. Acta 2009, 54, 4186.

    26. [26]

      (21) Wu, M. M.; Lin, G.; Chen, D. H.; Wang, G. G.; He, D.; Feng, S. H.; Xu, R. R. Chem. Mater. 2002, 14, 1974.

    27. [27]

      (22) Cheng, H.; Ma, J.; Zhao, Z.; Qi, L. Chem. Mater. 1995, 7, 663.

    28. [28]

      (23) Yin, S.; Hasegawa, H.; Maeda, D.; Ishitsuka, M.; Sato, T. J. Photochem. Photobio. A: Chem. 2004, 163, 1.

    29. [29]

      (24) Li, G.; Gray, K. A. Chem. Mater. 2007, 19, 1143.

    30. [30]

      (25) Yang, L.; Lin, Y.; Jia, J. J. Power. Sources 2008, 182, 370.

    31. [31]

      (26) Soler-Illia, G. J. D. A.; Crepaldi, E. L.; Grosso, D.; Sanchez, C. Curr. Opin. Colloid Interface Sci. 2003, 8, 109.


  • 加载中
    1. [1]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    2. [2]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    5. [5]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    6. [6]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    7. [7]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    8. [8]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    9. [9]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    11. [11]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    12. [12]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    13. [13]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    14. [14]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    15. [15]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    16. [16]

      Yingying Chen Di Xu Congmin Wang . Exploration and Practice of the “Four-Level, Three-Linkage” General Chemistry Course System. University Chemistry, 2024, 39(8): 119-125. doi: 10.3866/PKU.DXHX202401057

    17. [17]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    18. [18]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    19. [19]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    20. [20]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

Metrics
  • PDF Downloads(2193)
  • Abstract views(2726)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return