Citation: LIU Yan, WANG Fang-Fang, YU Chun-Yang, LIU Cui,  ng Li-Dong, YANG Zhong-Zhi. Structures and Binding Energies of Sr2+/Ba2+-Water Systems by Ab initio and ABEEM/MM Method[J]. Acta Physico-Chimica Sinica, ;2011, 27(02): 379-387. doi: 10.3866/PKU.WHXB20110233 shu

Structures and Binding Energies of Sr2+/Ba2+-Water Systems by Ab initio and ABEEM/MM Method

  • Received Date: 7 October 2010
    Available Online: 10 January 2011

    Fund Project: 国家自然科学基金(20633050, 20703022, 21011120087) (20633050, 20703022, 21011120087)辽宁省教育厅基金(2009T057)资助项目 (2009T057)

  • Hydrated clusters of Sr2+/Ba2+(H2O)n (n=1-6) were investigated by the ab initio method and the ABEEM/MM fluctuating charge molecular force field. ABEEM/MM potential functions of cation-water interactions were constructed based on the stable structures and binding energies of the hydrated clusters were obtained. The results from ABEEM/MM are consistent with those from the ab initio method. Furthermore, Sr2+ and Ba2+ aqueous solutions were studied by ABEEM/MM molecular dynamic simulations. Results show that for the Sr2+ aqueous solution the first and second peaks of the SrO radial distribution function (RDF) are located at 0.257 and 0.464 nm, respectively. The coordination numbers of the water molecules for the first and second hydration shells are 9.2 and 11.4, respectively. For the Ba2+ aqueous solution, the first and second peaks of the BaO RDF are located at 0.269 and 0.467 nm, respectively. The coordination numbers of water molecules for the first and second hydration shells are 9.9 and 12.4, respectively. These results also show od consistency with experimental observations and other theoretical simulations. Compared with the external water molecules, the water molecules in the first hydration shell are evidently polarized by the cation and their O―H bond lengths are stretched while the HOH bond angles are found to be reduced.

  • 加载中
    1. [1]

      (1) Shimamura, T.; Weyand, S.; Beckstein, O.; Rutherford, N. G.; Hadden, J. M.; Sharples, D.; Sansom, M. S. P.; Iwata, S.; Henderson, P. J. F.; Cameron A. D. Science 2010, 328, 470.

    2. [2]

      (2) Ohtaki, H.; Radnai, T. Chem. Rev. 1993, 93, 1157.

    3. [3]

      (3) Richens, D. T. The Chemistry of Aqua Ions; John Wiley & Sons: New York, 1997.

    4. [4]

      (4) Vinogradov, E. V.; Smirnov, P. R.; Trostin, V. N. Russ. Chem. Bull. 2003, 52, 1.

    5. [5]

      (5) Liang, X. Y.; Campopiano, D. J.; Sadler, P. J. Chem. Soc. Rev. 2007, 36, 968.

    6. [6]

      (6) Marcus, Y. Chem. Rev. 2009, 109, 1346.

    7. [7]

      (7) Kankia, B. I.; Marky, L. A. J. Am. Chem. Soc. 2001, 123, 10799.

    8. [8]

      (8) Dunbar, R. C.; Steill, J. D.; Polfer, N. C.; Oomens, J. J. Phys. Chem. B 2009, 113, 10552.

    9. [9]

      (9) Shao, H. B.; Wang, X. Y.; Wang, J. M.; Wang, J. B.; Zhang, J. Q.; Cao, C. N. Acta Phys. -Chim. Sin. 2006, 22, 312.

    10. [10]

      [邵海波, 王晓艳, 王建明, 王俊波, 张鉴清, 曹楚南. 物理化学学报, 2006, 22, 312.]

    11. [11]

      (10) Rode, B. M.; Hofer, T. S. Pure Appl. Chem, 2006, 78, 525.

    12. [12]

      (11) Masia, M. J. Chem. Phys. 2008, 128, 184107.

    13. [13]

      (12) Jorgenson, W. L. J. Chem. Theory Comput. 2007, 3, 1877.

    14. [14]

      (13) Wang, Z. X.; Zhang, W.; Wu, C.; Lei, H.; Cieplak, P.; Duan, Y. J. Comput. Chem. 2006, 27, 781.

    15. [15]

      (14) Lamureux, G.; Roux, B. J. Chem. Phys. 2003, 119, 3025.

    16. [16]

      (15) Xie, W.; Pu, J.; MacKerell, A. D., Jr.; Gao, J. L. J. Chem. Theory Comput. 2007, 3, 1878.

    17. [17]

      (16) Jorgenson, W. L.; Jensen, K. P.; Alexandrova, A. N. J. Chem. Theory Comput. 2007, 3, 1987.

    18. [18]

      (17) Schnieders, M. J.; Ponder, J. W. J. Chem. Theory Comput. 2007, 3, 2083.

    19. [19]

      (18) Holt, A.; Karlström, G. J. Comput. Chem. 2008, 29, 1084.

    20. [20]

      (19) Holt, A.; Karlström, G. J. Comput. Chem. 2008, 29, 2033.

    21. [21]

      (20) Anisimov, V. M.; Vorobyov, I. V.; Roux, B.; MacKerell, A. D., Jr. J. Chem. Theory Comput. 2007, 3, 1927.

    22. [22]

      (21) Banks, J. L.; Kaminski, G. A.; Zhou, R.; Mainz, D. T.; Berne, B. J.; Friesner, R. A. J. Chem. Phys. 1999, 110, 741.

    23. [23]

      (22) Chelli, R.; Procacci, P. J. Chem. Phys. 2002, 117, 9175.

    24. [24]

      (23) Patel, S.; Brooks, C. L., III. J. Comput. Chem. 2004, 25, 1.

    25. [25]

      (24) Yang, Z. Z.; Wu, Y.; Zhao, D. X. J. Chem. Phys. 2004, 120, 2541.

    26. [26]

      (25) Mortier, W. J.; Ghosh, S. K.; Shankar, S. J. Am. Chem. Soc. 1986, 108, 4315.

    27. [27]

      (26) York, D. M.; Yang, W. T. J. Chem. Phys. 1996, 104, 159.

    28. [28]

      (27) Lopes, P. E. M.; MacKerell, A. D., Jr.; Roux, B. Theor. Chem. Acc. 2009, 124, 11.

    29. [29]

      (28) Grossfield, A.; Ren, P. Y.; Ponder, J. W. J. Am. Chem. Soc. 2003, 125, 15671.

    30. [30]

      (29) Lamoureux, G.; Roux, B. J. Phys. Chem. B 2006, 110, 3308.

    31. [31]

      (30) Warren, G. L.; Patel, S. J. Phys. Chem. B 2008, 112, 11679.

    32. [32]

      (31) Masia, M.; Probst, M. J. Chem. Phys. 2005, 123, 164505.

    33. [33]

      (32) Piquemal, J. P.; Perera, L.; Cisneros, G. A.; Ren, P. Y.; Pedersen, L. G.; Darden, T. A. J. Chem. Phys. 2006, 125, 054511.

    34. [34]

      (33) Jungwirth, P.; Tobias, T. J. Chem. Rev. 2006, 106, 159.

    35. [35]

      (34) D′Angleo, P.; Pavel, N. V.; Roccatano, D. Phys. Rev. B 1996, 54, 12129.

    36. [36]

      (35) Persson, I.; Sandstr?m, M.; Yokoyama, H.; Chaudhry, M. Z. Naturforsch. A 1995, 50, 21.

    37. [37]

      (36) Hofer, T. S.; Rode, B. M.; Randolf, B. R. Chem. Phys. 2005, 312, 81.

    38. [38]

      (37) Han, Y. K.; Jeong, Y. K. J. Phys. Chem. 1996, 100, 18004.

    39. [39]

      (38) Peschke, M.; Blades, A. T.; Kebarle, P. J. Phys. Chem. A 1998, 102, 9978.

    40. [40]

      (39) Rodriguez-Cruz, S. E.; Jockusch, R. A.; Williams, E. R. J. Am. Chem. Soc. 1999, 121, 8898.

    41. [41]

      (40) Harris, D. J.; Brodholt, J. P.; Sherman, D. M. J. Phys. Chem. B 2003, 107, 9056.

    42. [42]

      (41) Yang, Z. Z.; Wang, C. S. J. Phys. Chem. A 1997, 101, 6315.

    43. [43]

      (42) Wang, C. S.; Yang, Z. Z. J. Chem. Phys. 1999, 110, 6189.

    44. [44]

      (43) Wu, Y.; Yang, Z. Z. J. Phys. Chem. A 2004, 108, 7563.

    45. [45]

      (44) Yang, Z. Z.; Ye, Y. J.; Tang, A. Q. Quantum Chemistry of Macromolecular Systems, 2nd ed.; Jilin University Press: Changchun, 2005; pp 215-294.

    46. [46]

      [杨忠志, 叶元杰, 唐敖庆. 大分子体系的量子化学(第二版). 长春: 吉林大学出版社, 2005: 215-294.]

    47. [47]

      (45) Yang, Z. Z.; Li, X. J. Phys. Chem. A 2005, 109, 3517.

    48. [48]

      (46) Li, X.; Yang, Z. Z. J. Phys. Chem. A 2005, 109, 4102.

    49. [49]

      (47) Li, X.; Yang, Z. Z. J. Chem. Phys. 2005, 122, 084514.

    50. [50]

      (48) Yang, Z. Z.; Li, X. J. Chem. Phys. 2005, 123, 094507.

    51. [51]

      (49) Yang, Z. Z.; Zhang, Q. J. Comput. Chem. 2006, 27, 1.

    52. [52]

      (50) Li, X.; ng, L. D.; Yang, Z. Z. Sci. China Ser. B-Chem. 2008, 51, 1221.

    53. [53]

      (51) Cui, B. Q.; ng, L. D.; Zhao, D. X. Acta Phys. -Chim. Sin. 2008, 24, 1035.

    54. [54]

      [崔宝秋, 宫利东, 赵东霞. 物理化学学报, 2008, 24, 1035.]

    55. [55]

      (52) Wang, F. F.; Zhao, D. X.; ng, L. D. Theor. Chem. Acc. 2009, 124, 139.

    56. [56]

      (53) Zhao, D. X.; Liu, C.; Wang, F. F.; Yu, C. Y.; ng, L. D.; Liu, S. B.; Yang, Z. Z. J. Chem. Theory Comput. 2010, 6, 795.

    57. [57]

      (54) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, Revision D.01; Gaussian Inc.: Wallingford, CT, 2004.

    58. [58]

      (55) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. J. Phys. Chem. 1984, 81, 3684.

    59. [59]

      (56) Hockney, R. W. Method Comput. Phys. 1970, 9, 136.

    60. [60]

      (57) CRC Handbook of Chemistry and Physics, 84th ed.; Lide, D. R. Ed. CRC Press: Boca Raton, 2003-2004.


  • 加载中
    1. [1]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    2. [2]

      Yu'ang Liu Yuechao Wu Junyu Huang Tao Wang Xiaohong Liu Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112

    3. [3]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    4. [4]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    5. [5]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    6. [6]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    7. [7]

      Ping Ye Lingshuang Qin Mengyao He Fangfang Wu Zengye Chen Mingxing Liang Libo Deng . 荷叶衍生多孔碳的零电荷电位调节实现废水中电化学捕集镉离子. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-. doi: 10.3866/PKU.WHXB202311032

    8. [8]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    9. [9]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    10. [10]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    11. [11]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    12. [12]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    13. [13]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    14. [14]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    15. [15]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    16. [16]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    17. [17]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    18. [18]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    19. [19]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    20. [20]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

Metrics
  • PDF Downloads(1218)
  • Abstract views(2586)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return