Citation: LIU Yan, WANG Fang-Fang, YU Chun-Yang, LIU Cui,  ng Li-Dong, YANG Zhong-Zhi. Structures and Binding Energies of Sr2+/Ba2+-Water Systems by Ab initio and ABEEM/MM Method[J]. Acta Physico-Chimica Sinica, ;2011, 27(02): 379-387. doi: 10.3866/PKU.WHXB20110233 shu

Structures and Binding Energies of Sr2+/Ba2+-Water Systems by Ab initio and ABEEM/MM Method

  • Received Date: 7 October 2010
    Available Online: 10 January 2011

    Fund Project: 国家自然科学基金(20633050, 20703022, 21011120087) (20633050, 20703022, 21011120087)辽宁省教育厅基金(2009T057)资助项目 (2009T057)

  • Hydrated clusters of Sr2+/Ba2+(H2O)n (n=1-6) were investigated by the ab initio method and the ABEEM/MM fluctuating charge molecular force field. ABEEM/MM potential functions of cation-water interactions were constructed based on the stable structures and binding energies of the hydrated clusters were obtained. The results from ABEEM/MM are consistent with those from the ab initio method. Furthermore, Sr2+ and Ba2+ aqueous solutions were studied by ABEEM/MM molecular dynamic simulations. Results show that for the Sr2+ aqueous solution the first and second peaks of the SrO radial distribution function (RDF) are located at 0.257 and 0.464 nm, respectively. The coordination numbers of the water molecules for the first and second hydration shells are 9.2 and 11.4, respectively. For the Ba2+ aqueous solution, the first and second peaks of the BaO RDF are located at 0.269 and 0.467 nm, respectively. The coordination numbers of water molecules for the first and second hydration shells are 9.9 and 12.4, respectively. These results also show od consistency with experimental observations and other theoretical simulations. Compared with the external water molecules, the water molecules in the first hydration shell are evidently polarized by the cation and their O―H bond lengths are stretched while the HOH bond angles are found to be reduced.

  • 加载中
    1. [1]

      (1) Shimamura, T.; Weyand, S.; Beckstein, O.; Rutherford, N. G.; Hadden, J. M.; Sharples, D.; Sansom, M. S. P.; Iwata, S.; Henderson, P. J. F.; Cameron A. D. Science 2010, 328, 470.

    2. [2]

      (2) Ohtaki, H.; Radnai, T. Chem. Rev. 1993, 93, 1157.

    3. [3]

      (3) Richens, D. T. The Chemistry of Aqua Ions; John Wiley & Sons: New York, 1997.

    4. [4]

      (4) Vinogradov, E. V.; Smirnov, P. R.; Trostin, V. N. Russ. Chem. Bull. 2003, 52, 1.

    5. [5]

      (5) Liang, X. Y.; Campopiano, D. J.; Sadler, P. J. Chem. Soc. Rev. 2007, 36, 968.

    6. [6]

      (6) Marcus, Y. Chem. Rev. 2009, 109, 1346.

    7. [7]

      (7) Kankia, B. I.; Marky, L. A. J. Am. Chem. Soc. 2001, 123, 10799.

    8. [8]

      (8) Dunbar, R. C.; Steill, J. D.; Polfer, N. C.; Oomens, J. J. Phys. Chem. B 2009, 113, 10552.

    9. [9]

      (9) Shao, H. B.; Wang, X. Y.; Wang, J. M.; Wang, J. B.; Zhang, J. Q.; Cao, C. N. Acta Phys. -Chim. Sin. 2006, 22, 312.

    10. [10]

      [邵海波, 王晓艳, 王建明, 王俊波, 张鉴清, 曹楚南. 物理化学学报, 2006, 22, 312.]

    11. [11]

      (10) Rode, B. M.; Hofer, T. S. Pure Appl. Chem, 2006, 78, 525.

    12. [12]

      (11) Masia, M. J. Chem. Phys. 2008, 128, 184107.

    13. [13]

      (12) Jorgenson, W. L. J. Chem. Theory Comput. 2007, 3, 1877.

    14. [14]

      (13) Wang, Z. X.; Zhang, W.; Wu, C.; Lei, H.; Cieplak, P.; Duan, Y. J. Comput. Chem. 2006, 27, 781.

    15. [15]

      (14) Lamureux, G.; Roux, B. J. Chem. Phys. 2003, 119, 3025.

    16. [16]

      (15) Xie, W.; Pu, J.; MacKerell, A. D., Jr.; Gao, J. L. J. Chem. Theory Comput. 2007, 3, 1878.

    17. [17]

      (16) Jorgenson, W. L.; Jensen, K. P.; Alexandrova, A. N. J. Chem. Theory Comput. 2007, 3, 1987.

    18. [18]

      (17) Schnieders, M. J.; Ponder, J. W. J. Chem. Theory Comput. 2007, 3, 2083.

    19. [19]

      (18) Holt, A.; Karlström, G. J. Comput. Chem. 2008, 29, 1084.

    20. [20]

      (19) Holt, A.; Karlström, G. J. Comput. Chem. 2008, 29, 2033.

    21. [21]

      (20) Anisimov, V. M.; Vorobyov, I. V.; Roux, B.; MacKerell, A. D., Jr. J. Chem. Theory Comput. 2007, 3, 1927.

    22. [22]

      (21) Banks, J. L.; Kaminski, G. A.; Zhou, R.; Mainz, D. T.; Berne, B. J.; Friesner, R. A. J. Chem. Phys. 1999, 110, 741.

    23. [23]

      (22) Chelli, R.; Procacci, P. J. Chem. Phys. 2002, 117, 9175.

    24. [24]

      (23) Patel, S.; Brooks, C. L., III. J. Comput. Chem. 2004, 25, 1.

    25. [25]

      (24) Yang, Z. Z.; Wu, Y.; Zhao, D. X. J. Chem. Phys. 2004, 120, 2541.

    26. [26]

      (25) Mortier, W. J.; Ghosh, S. K.; Shankar, S. J. Am. Chem. Soc. 1986, 108, 4315.

    27. [27]

      (26) York, D. M.; Yang, W. T. J. Chem. Phys. 1996, 104, 159.

    28. [28]

      (27) Lopes, P. E. M.; MacKerell, A. D., Jr.; Roux, B. Theor. Chem. Acc. 2009, 124, 11.

    29. [29]

      (28) Grossfield, A.; Ren, P. Y.; Ponder, J. W. J. Am. Chem. Soc. 2003, 125, 15671.

    30. [30]

      (29) Lamoureux, G.; Roux, B. J. Phys. Chem. B 2006, 110, 3308.

    31. [31]

      (30) Warren, G. L.; Patel, S. J. Phys. Chem. B 2008, 112, 11679.

    32. [32]

      (31) Masia, M.; Probst, M. J. Chem. Phys. 2005, 123, 164505.

    33. [33]

      (32) Piquemal, J. P.; Perera, L.; Cisneros, G. A.; Ren, P. Y.; Pedersen, L. G.; Darden, T. A. J. Chem. Phys. 2006, 125, 054511.

    34. [34]

      (33) Jungwirth, P.; Tobias, T. J. Chem. Rev. 2006, 106, 159.

    35. [35]

      (34) D′Angleo, P.; Pavel, N. V.; Roccatano, D. Phys. Rev. B 1996, 54, 12129.

    36. [36]

      (35) Persson, I.; Sandstr?m, M.; Yokoyama, H.; Chaudhry, M. Z. Naturforsch. A 1995, 50, 21.

    37. [37]

      (36) Hofer, T. S.; Rode, B. M.; Randolf, B. R. Chem. Phys. 2005, 312, 81.

    38. [38]

      (37) Han, Y. K.; Jeong, Y. K. J. Phys. Chem. 1996, 100, 18004.

    39. [39]

      (38) Peschke, M.; Blades, A. T.; Kebarle, P. J. Phys. Chem. A 1998, 102, 9978.

    40. [40]

      (39) Rodriguez-Cruz, S. E.; Jockusch, R. A.; Williams, E. R. J. Am. Chem. Soc. 1999, 121, 8898.

    41. [41]

      (40) Harris, D. J.; Brodholt, J. P.; Sherman, D. M. J. Phys. Chem. B 2003, 107, 9056.

    42. [42]

      (41) Yang, Z. Z.; Wang, C. S. J. Phys. Chem. A 1997, 101, 6315.

    43. [43]

      (42) Wang, C. S.; Yang, Z. Z. J. Chem. Phys. 1999, 110, 6189.

    44. [44]

      (43) Wu, Y.; Yang, Z. Z. J. Phys. Chem. A 2004, 108, 7563.

    45. [45]

      (44) Yang, Z. Z.; Ye, Y. J.; Tang, A. Q. Quantum Chemistry of Macromolecular Systems, 2nd ed.; Jilin University Press: Changchun, 2005; pp 215-294.

    46. [46]

      [杨忠志, 叶元杰, 唐敖庆. 大分子体系的量子化学(第二版). 长春: 吉林大学出版社, 2005: 215-294.]

    47. [47]

      (45) Yang, Z. Z.; Li, X. J. Phys. Chem. A 2005, 109, 3517.

    48. [48]

      (46) Li, X.; Yang, Z. Z. J. Phys. Chem. A 2005, 109, 4102.

    49. [49]

      (47) Li, X.; Yang, Z. Z. J. Chem. Phys. 2005, 122, 084514.

    50. [50]

      (48) Yang, Z. Z.; Li, X. J. Chem. Phys. 2005, 123, 094507.

    51. [51]

      (49) Yang, Z. Z.; Zhang, Q. J. Comput. Chem. 2006, 27, 1.

    52. [52]

      (50) Li, X.; ng, L. D.; Yang, Z. Z. Sci. China Ser. B-Chem. 2008, 51, 1221.

    53. [53]

      (51) Cui, B. Q.; ng, L. D.; Zhao, D. X. Acta Phys. -Chim. Sin. 2008, 24, 1035.

    54. [54]

      [崔宝秋, 宫利东, 赵东霞. 物理化学学报, 2008, 24, 1035.]

    55. [55]

      (52) Wang, F. F.; Zhao, D. X.; ng, L. D. Theor. Chem. Acc. 2009, 124, 139.

    56. [56]

      (53) Zhao, D. X.; Liu, C.; Wang, F. F.; Yu, C. Y.; ng, L. D.; Liu, S. B.; Yang, Z. Z. J. Chem. Theory Comput. 2010, 6, 795.

    57. [57]

      (54) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, Revision D.01; Gaussian Inc.: Wallingford, CT, 2004.

    58. [58]

      (55) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. J. Phys. Chem. 1984, 81, 3684.

    59. [59]

      (56) Hockney, R. W. Method Comput. Phys. 1970, 9, 136.

    60. [60]

      (57) CRC Handbook of Chemistry and Physics, 84th ed.; Lide, D. R. Ed. CRC Press: Boca Raton, 2003-2004.


  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    3. [3]

      Jinghua Wang Yanxin Yu Yanbiao Ren Yesheng Wang . Integration of Science and Education: Investigation of Tributyl Citrate Synthesis under the Promotion of Hydrate Molten Salts for Research and Innovation Training. University Chemistry, 2024, 39(11): 232-240. doi: 10.3866/PKU.DXHX202402057

    4. [4]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    5. [5]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    6. [6]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    7. [7]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    8. [8]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    9. [9]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    10. [10]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    11. [11]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    12. [12]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    13. [13]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    14. [14]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    15. [15]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    16. [16]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    17. [17]

      Simin Fang Hong Wu Wei Liu Wei Wei Hongyan Feng Wan Li . Construction and Application of Teaching Resources for Inorganic and Analytical Chemistry Experimental Course in the Context of Digital Empowerment. University Chemistry, 2024, 39(10): 156-163. doi: 10.3866/PKU.DXHX202402053

    18. [18]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    19. [19]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    20. [20]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

Metrics
  • PDF Downloads(1218)
  • Abstract views(2451)
  • HTML views(32)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return