Citation: YU Chang-Lin, YANG Kai, YU Jimmy C, PENG Peng, CAO Fang-Fang, LI Xin, ZHOU Xiao-Chun. Effects of Rare Earth Ce Doping on the Structure and Photocatalytic Performance of ZnO[J]. Acta Physico-Chimica Sinica, ;2011, 27(02): 505-512. doi: 10.3866/PKU.WHXB20110230 shu

Effects of Rare Earth Ce Doping on the Structure and Photocatalytic Performance of ZnO

  • Received Date: 21 October 2010
    Available Online: 7 January 2011

    Fund Project: 国家自然科学基金(21067004) (21067004) 固体表面物理化学国家重点实验室(厦门大学)开放基金(200906) (厦门大学)开放基金(200906) 江西省教育厅青年科学基金(GJJ10150) (GJJ10150)江西省自然科学基金(2010GZH0048)资助项目 (2010GZH0048)

  • A series of ZnO photocatalysts doped with different amounts of cerium were prepared by co-precipitation and then calcined at different temperatures. The prepared pure ZnO and Ce-doped ZnO samples were characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), UV-visible (UV-Vis) spectroscopy, and photoluminescence (PL) spectroscopy. The photocatalytic activity of the samples was evaluated by the photodegradation of acid orange II under UV light (λ=365 nm) irradiation. FT-IR results showed that ZnO doped with 2% (w, mass fraction) cerium had far more OH groups over the surface of the doped sample than the pure ZnO. At the same time, PL tests indicated that the presence of 2% (w) cerium effectively suppressed the recombination of the photogenerated hole-electron pairs. On the other hand, the calcination temperatures influenced the crystallinity and crystal size of the catalysts. XRD tests indicated that the sample calcined at 500 °C had od crystallinity and a small crystal size while elevated temperature treatment (600-800 °C) would result in sintering and increase the crystal size. At the optimal calcination temperature of 500 °C and at 2% (w) cerium doping the composite photocatalyst had much higher photocatalytic activity and stability compared with pure ZnO. The high photocatalytic performance of the Ce doped ZnO could be attributed to an increase in surface OH groups, high crystallinity and a low recombination rate of electron/hole (e-/h+) pairs.

  • 加载中
    1. [1]

      (1) Zhou, Z. G. Funct. Mater. Info. 2008, 4, 17.

    2. [2]

      [邹志刚. 功能材料信息, 2008, 4, 17.]

    3. [3]

      (2) Yu, C. L.; Zhou, W. Q.; Yang, K.; Rong, G. J. Mater. Sci. 2010, 45, 5756.

    4. [4]

      (3) Yu, C. L.; Yu, J. M. Mater. Sci. Eng. B 2009, 164, 16.

    5. [5]

      (4) Wen, F. Y.; Yang, J. H.; Zong, X.; Ma, Y. Prog. Chem. 2009, 21, 2285.

    6. [6]

      [温福宇, 杨金辉, 宗旭, 马艺. 化学进展, 2009, 21: 2285.]

    7. [7]

      (5) Yu, C. L.; Yu, J. M. Catal. Lett. 2010, 140, 172.

    8. [8]

      (6) Zhang, J.; Xu, Q.; Feng, Z. C.; Li, M. J.; Li, C. Angew. Chem. Int. Edit. 2008, 47, 1766.

    9. [9]

      (7) Li, Y. X.; Hu, Y. F.; Peng, S, Q.; Lu, G. X.; Li, S. B. J. Phys. Chem. C 2009, 113, 9352.

    10. [10]

      (8) Yu, C. L.; Fan, C. F.; Yu, J. M. Mater. Res. Bull. 2011, 46, 140.

    11. [11]

      (9) Yu, J. G.; Xiang, Q. J.; Zhou, M. H. Appl. Catal. B 2009, 90, 595.

    12. [12]

      (10) Yu, C. L.; Yu, J. M. J. Phys. Chem. Solids 2010, 71, 1337.

    13. [13]

      (11) Yu, C. L.; Yu, J. M.; Chan, M. J. Solid State Chem. 2009, 182, 1061.

    14. [14]

      (12) Yu, C. L.; Yu, J. M. Catal. Lett. 2009, 129, 462.

    15. [15]

      (13) Zhang, X.; Ai, Z. H.; Jia, F. L.; Zhang, L. Z. J. Phys. Chem. C 2008, 112, 747.

    16. [16]

      (14) Li, C. Q.; Luo, L. T.; Xiong, G. W. Chin. J. Catal. 2009, 30, 1058.

    17. [17]

      [李长全, 罗来涛, 熊光伟. 催化学报, 2009, 30, 1058.]

    18. [18]

      (15) Xu, B.; Wang, S. L. Chin. Funct. Mater. 2010, 41, 307.

    19. [19]

      [徐波, 王树林. 功能材料, 2010, 41, 307.]

    20. [20]

      (16) Li, Y. X.; Wang, T. H.; Peng, S. Q.; Lü, G. X.; Li, S. B. Acta Phys. -Chim. Sin. 2004, 20, 1434.

    21. [21]

      [李越湘, 王添辉, 彭绍琴, 吕功煊, 李树本. 物理化学学报, 2004, 20, 1434.]

    22. [22]

      (17) Xu, P. C.; Liu, Y.; Wei, J. H.; Xiong, R.; Pan, C. X.; Shi, J. Acta Phys. -Chim. Sin. 2010, 26, 2261.

    23. [23]

      [许平昌, 柳阳, 魏建红, 熊锐, 潘春旭, 石兢. 物理化学学报, 2010, 26, 2261.]

    24. [24]

      (18) Yu, C. L.; Yu, J. M. Mater. Sci. Eng. B 2010, 166, 213.

    25. [25]

      (19) Lin, J.; Yu, J. M. J. Photochem. Photobiol. A 1998, 16, 63.

    26. [26]

      (20) Yu, J. G.; Yu, H. G.; Ao, C. H.; Lee, S. C.; Yu, J. C.; Ho, W. K. Thin Solid Films, 2006, 496, 273.

    27. [27]

      (21) Fu, T. H.; Gao, Q. Q.; Liu, F.; Dai, H, J.; Kou, X. M. Chin. J. Catal. 2010, 31, 797.

    28. [28]

      [傅天华, 高倩倩,刘斐, 代华均, 寇兴明. 催化学报, 2010, 31, 797.]

    29. [29]

      (22) Deng, Q. Y.; Liu, L.; Deng, H. M. Spectrum Analysis Tutorial; Science Press: Beijing, 2002; p68.

    30. [30]

      [邓芹英, 刘岚, 邓惠敏. 波谱分析教程. 北京: 科学出版社, 2003: 68.]

    31. [31]

      (23) McDevitt, N. T.; Baun, W. L. Spectrochimica. Acta 1964, 20, 799.

    32. [32]

      (24) Zhao, Z. C.; Liu, L. L. J. Bohai. Univ (Nat. Sci.) 2009, 30, 317.

    33. [33]

      [赵志成, 刘连利. 渤海大学学报: 自然科学版, 2009, 30, 317.]

    34. [34]

      (25) Gao, L.; Zheng, S.; Zhang, Q, H. Nano TiO2 Photocatalytic Materials and Its Application; Chemical Industry Press: Beijing, 2002; pp 110-111.

    35. [35]

      [高濂, 郑珊, 张青红. 纳米氧化钛光催化材料及应用. 北京: 化学工业出版社, 2002: 110-111.]

    36. [36]

      (26) Jia, T. K.; Wang, W. M.; Huang, F.; Fu, Z. Y.; Ma, X. H.; Guo, W. Rare Metal Mat. Eng. 2009, 38, 979.

    37. [37]

      [贾铁昆, 王为民, 黄飞,傅正义, 马秀华, 郭伟. 稀有金属材料与工程, 2009, 38, 979.]

    38. [38]

      (27) Yang, Y. Q.; Du, G. H.; Ding, W.; Li, J.; Li, T. B.; Xu, B. S. Chin. J. Inorg. Chem. 2010, 26, 300.

    39. [39]

      [杨永强, 杜高辉, 丁伟, 李洁, 李天宝, 许并社. 无机化学学报, 2010, 26, 300.]

    40. [40]

      (28) Park, K. C.; Ma, D. Y.; Kim, K. H. Thin Solid Films 1997, 305, 201.

    41. [41]

      (29) Su, S.; Lu, S. X.; Xu, W. G. Chin. J. Process. Eng. 2008, 8, 54.

    42. [42]

      [苏苏, 卢士香, 徐文国. 过程工程学报, 2008, 8, 54.]

    43. [43]

      (30) Herrmann, J. M.; Ahiri, H.; Ait-Ichou, Y.; Lassaletta, G.; nzalez-Elipe, A. R.; Fernandez, A. Appl. Catal. B 1997, 13, 219.

    44. [44]

      (31) Lin, X. P.; Huang, T.; Huang, F. Q.; Wang, W. D.; Shi, J. L. J. Phys. Chem. B 2006, 110, 24629.


  • 加载中
    1. [1]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    4. [4]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    6. [6]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    9. [9]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    10. [10]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    11. [11]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    14. [14]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    15. [15]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    16. [16]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    17. [17]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    18. [18]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    19. [19]

      Yang Xia Kangyan Zhang Heng Yang Lijuan Shi Qun Yi . 构建双通道路径增强iCOF/Bi2O3 S型异质结在纯水体系中光催化合成H2O2性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-. doi: 10.3866/PKU.WHXB202407012

    20. [20]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

Metrics
  • PDF Downloads(1927)
  • Abstract views(4137)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return