Citation: HU Jian-Ping, WANG Jun, TANG Dian-Yong, FU Qin-Chao, ZHANG Yuan-Qin. Reaction Mechanisms of CO Oxidation Catalyzed by Binary Copper Group Cluster Anions[J]. Acta Physico-Chimica Sinica, ;2011, 27(02): 329-336. doi: 10.3866/PKU.WHXB20110226 shu

Reaction Mechanisms of CO Oxidation Catalyzed by Binary Copper Group Cluster Anions

  • Received Date: 25 August 2010
    Available Online: 5 January 2011

    Fund Project: 教育部科学技术研究重点项目(210189) (210189) 四川省自然科学基金(2008JY0119) (2008JY0119)四川省教育厅(07ZA158)资助 (07ZA158)

  • The detailed mechanisms of CO oxidation catalyzed by AuAg-, AuCu-, and AgCu- were investigated using density functional theory at the B3LYP level. The computational results indicate that the adsorption site of CO onto the mixed clusters decreases as follows: Cu>Au>Ag. Copper is the preferred adsorption site for O2 on the binary clusters. The adsorption of O2 onto ld was found to be the weakest. Three reaction pathways exist for CO oxidation catalyzed by AuAg-, AuCu-, and AgCu-. The most feasible pathway for CO oxidation catalyzed by AuAg- is CO insertion into the Ag―O bond of AuA 2- to produce the [Au―AgC(O―O)O]- intermediate, which then decomposes into CO2 and AuA -, or another CO molecule attacks [Au―AgC(O―O)O]- to form two CO2 molecules and AuAg- anion. A feasible pathway for CO oxidation catalyzed by AuCu- or AgCu- is initiated by the co-absorption of CO and O2 onto the clusters followed by the formation of a four-membered ring intermediate to produce the corresponding products. The cooperation effect of the second CO is very weak. The catalytic activities of AuAg- and AuCu- toward CO oxidation are stronger than that of Au2- . Doping the Au clusters with Ag and Cu increases the catalytic activity. These results are in agreement with the previous experimental results.

  • 加载中
    1. [1]

      1 Min, B. K.; Friend, C. M. Chem. Rev. 2007, 107, 2709, and references therein.

    2. [2]

      2 Zhang, X.; Xu, B. Q. Acta Chim. Sin. 2005, 63, 86.

    3. [3]

      [张 鑫, 徐柏庆. 化学学报, 2005, 63, 86.]

    4. [4]

      3 Shao, J. J.; Zhang, P.; Song, W.; Huang, X. M.; Xu, Y. D.; Shen, W. J. Acta Chim. Sin. 2007, 65, 2007.

    5. [5]

      [邵建军, 张 平, 宋 巍, 黄秀敏, 徐奕德, 申文杰. 化学学报, 2007, 65, 2007.]

    6. [6]

      4 Chen, M.; odman, D. W. Acc. Chem. Res. 2006, 39, 739.

    7. [7]

      5 Bowker, M. Chem. Soc. Rev. 2008, 37, 2204.

    8. [8]

      6 Campbell, C. T. Science 2004, 306, 234.

    9. [9]

      7 Reveles, J. U.; Johnson,G. E.; Khanna, S. N.; Castleman, A. W., Jr. J. Phys. Chem. C 2010, 114, 5438.

    10. [10]

      8 Xue, W.; Wang, Z. C.; He, S. G.; Xie, Y.; Bernstein, E. R. J. Am. Chem. Soc. 2008, 130, 15879.

    11. [11]

      9 Wang, A. Q.; Liu, J. H.; Lin, S. D.; Lin, T. S.; Mou, C. Y. J. Catal. 2005, 233, 186.

    12. [12]

      10 Wang, A. Q.; Chang, C. M.; Mou, C. Y. J. Phys. Chem. B 2005, 109, 18860.

    13. [13]

      11 Liu, X.; Wang, A. Q.; Wang, X.; Mou, C. Y.; Zhang, T. Chem. Commun. 2008, No. 27, 3187.

    14. [14]

      12 Yen, C. W.; Lin, M. L.; Wang, A.; Chen, S. A.; Chen, J. M.; Mou, C. Y. J. Phys. Chem. C 2009, 113, 17831.

    15. [15]

      13 Wang, A. Q.; Hsieh, Y. P.; Chen, Y. F.; Mou, C. Y. J. Catal. 2006, 237, 197.

    16. [16]

      14 Liu, J. H.; Wang, A. Q.; Chi, Y. S.; Lin, H. P.; Mou, C. Y. J. Phys. Chem. B 2005, 109, 40.

    17. [17]

      15 Liu, X.; Wang, A. Q.; Yang, X. F.; Zhang, T.; Mou, C. Y.; Su, D. S.; Li, J. J. Chem. Mater. 2009, 21, 410.

    18. [18]

      16 Wittstock, A.; Neumann, B.; Schaefer, A.; Dumbuya, K.; Kübel, C.; Biener, M. M.; Zielasek, V.; Steinrück, H. P.; ttfried, J. M.; Biener, J.; Hamza, A.; B?umer, M. J. Phys. Chem. C 2009, 113, 5593.

    19. [19]

      17 Bernhardt, T. M.; Socaciu-Siebert, L. D.; Hagen, J.; Wöste, L. Appl. Catal. A-Gen. 2005, 291, 170.

    20. [20]

      18 Mitri?, R.; Burda, J.; Bona?i?-Koutecký, V.; Fantucci, P. Euro. Phys. J. D 2003, 24, 41.

    21. [21]

      19 Chang, C. M.; Cheng, C.; Wei, C. M. J. Chem. Phys. 2008, 128, 124710.

    22. [22]

      20 Gao, Y.; Shao, N.; Pei, Y.; Zeng, X. C. Nano Lett. 2010, 10, 1055.

    23. [23]

      21 Kimble, M. L.; Moore, N. A.; Johnson, G. E.; Castleman, A. W. J. Chem. Phys. 2006, 125, 204311.

    24. [24]

      22 Tang, D. Y.; Zhang, Y. Q.; Hu, C. W. Acta Chim. Sin. 2008, 66, 1501.

    25. [25]

      [唐典勇, 张元勤, 胡常伟. 化学学报, 2008, 66, 1501.]

    26. [26]

      23 Tang, D. Y.; Hu, J. P., Zhang, Y. Q., Hu, C. W. Acta Chim. Sin. 2009, 67, 1859.

    27. [27]

      [唐典勇, 胡建平, 张元勤, 胡常伟. 化学学报, 2009, 67, 1859.]

    28. [28]

      24 Dholabhai, P. P.; Wu, X.; Ray, A. K. J. Mol. Struct.-Theochem 2005, 723, 139.

    29. [29]

      25 Tang, D. Y.; Hu, J. P.; Zhang, Y. Q.; Hu, C. W. Acta Chim. Sin. 2010, 68, 1379.

    30. [30]

      [唐典勇, 胡建平, 张元勤, 胡常伟. 化学学报, 2010, 68, 1379.]

    31. [31]

      26 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; et al. Gaussian 03, Revision E.01; Gaussian Inc.: Pittsburgh, PA, 2004.

    32. [32]

      27 Couty, M.; Hall, M. B. J. Comput. Chem. 1996, 17, 1359.

    33. [33]

      28 Ehlers, A. W.; Dapprich, B. S.; bbi, A.; Hollwarth, A.; Jonas, V.; Kohler, K. F.; Stegmann, R.; Veldkamp, A.; Frenking, G. Chem. Phys. Lett. 1993, 208, 111.

    34. [34]

      29 Ojifinni, R. A.; ng, J.; Froemming, N. S.; Flaherty, D. W.; Pan, M.; Henkelman, G.; Mullins, C. B. J. Am. Chem. Soc. 2008, 130, 11250.

    35. [35]

      30 Wang, F.; Zhang, D.; Xu, X.; Ding, Y. J. Phys. Chem. C 2009, 113, 18032.


  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    3. [3]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    4. [4]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    5. [5]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    6. [6]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    7. [7]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    8. [8]

      Qian Huang Zhaowei Li Jianing Zhao Ao Yu . Quantum Chemical Calculations Reveal the Details Below the Experimental Phenomenon. University Chemistry, 2024, 39(3): 395-400. doi: 10.3866/PKU.DXHX202309018

    9. [9]

      Yong Wang Yingying Zhao Boshun Wan . Analysis of Organic Questions in the 37th Chinese Chemistry Olympiad (Preliminary). University Chemistry, 2024, 39(11): 406-416. doi: 10.12461/PKU.DXHX202403009

    10. [10]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    11. [11]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    12. [12]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    13. [13]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    14. [14]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    15. [15]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    16. [16]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    17. [17]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    18. [18]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    19. [19]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    20. [20]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

Metrics
  • PDF Downloads(1194)
  • Abstract views(3464)
  • HTML views(47)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return