Citation: LI Li-Xiang, LIU Yong-Chang, GENG Xin, AN Bai-Gang. Synthesis and Electrochemical Performance of Nitrogen-Doped Carbon Nanotubes[J]. Acta Physico-Chimica Sinica, ;2011, 27(02): 443-448. doi: 10.3866/PKU.WHXB20110225 shu

Synthesis and Electrochemical Performance of Nitrogen-Doped Carbon Nanotubes

  • Received Date: 3 September 2010
    Available Online: 5 January 2011

    Fund Project: 辽宁省自然科学基金(20061078) (20061078)辽宁省教育厅基金(L2010197)资助项目 (L2010197)

  • We treated carbon nanotubes (CNTs) with hydrazine hydrate and diethylenetriamine separately and characterized them using scanning electron spectroscopy (SEM) and X-ray photoelectron spectroscopy (XPS). SEM indicated that the treated CNTs retained the length/diameter ratio of the pure CNTs and XPS showed that nitrogen was doped in the CNTs. XPS analysis also indicated that the carbon/nitrogen atomic ratio of the CNTs treated by hydrazine hydrate was 95/2, which was much higher than the 96/0.5 for the CNTs treated by diethylenetriamine. The hydrophilicity of the CNTs was found to be much higher after N-doping and it increased with an increase in the N content. Therefore, the water dispersibility of the N-doped CNTs treated by hydrazine hydrate was better than that of the N-doped CNTs treated by diethylenetriamine. As electrode materials for electrochemical capacitors, nitrogen functional groups contribute to the pseudo-Faradic capacitance but their cyclic performance still needs to be improved. Because of the od hydrophilicity of the N-doping CNTs, which improves the wettability of the CNTs for the electrolyte, the specific capacitance of the N-doping CNT electrode is still slightly higher than that of the pure CNT electrode after cycling.

  • 加载中
    1. [1]

      (1) Gu, P.; Wang, Y.; Li, G. H. Advances in Mechanics 2002, 32, 563.

    2. [2]

      [辜 萍, 王 宇, 李广海. 力学进展, 2002, 32, 563.]

    3. [3]

      (2) Dresselhaus, M. S.; Dresselhaus, G.; Eklund, P. C. Science of Fullerenes & Carbon Nanotubes, Academic Press: San Die , March 1996; pp 20-35.

    4. [4]

      (3) Treacy, M. M. J.; Ebbesen, T. W.; Gibson, J. M. Nature 1996, 381, 678.

    5. [5]

      (4) Krishnan, A.; Dujardin, E.; Ebbesen, T. W.; Yianilos, P. N.; Treacy, M. M. J. Phys. Rev. B 1998, 58, 14013.

    6. [6]

      (5) Frackowiak, E.; Metenier, K.; Bertagna, V.; Beguin, F. Appl. Phys. Lett. 2000, 77, 2421.

    7. [7]

      (6) Li, C. S.; Wang, D. Z.; Wang, X. F.; Liang, J. Carbon 2005, 43, 249.

    8. [8]

      (7) Pico, F.; Rojo, J. M.; Sanjuan, M. L.; Anson, A.; Benito, A. M.; Callejas, M. A.; Maser, W. K.; Martinez, M. T. J. Electrochem. Soc. 2004, 151, A831.

    9. [9]

      (8) Ma, R. Z; Wei, B. Q.; Xu, C. L.; Liang, J.; Wu, D. H. J. Tsinghua University (Sci. and Techno.), 2000, 40, 7.

    10. [10]

      [马仁志, 魏秉庆, 徐才录, 梁 吉, 吴德海. 清华大学学报(自然科学版), 2000, 40: 7.]

    11. [11]

      (9) Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A. Science 2002, 297, 787.

    12. [12]

      (10) McClain, D.; Wu, J.; Tavan, N. J. Phys. Chem. C 2007, 111, 7514.

    13. [13]

      (11) Freitag, M.; Tsang, J. C.; Kirtley, J. Nano Lett. 2006, 6, 1425.

    14. [14]

      (12) Shiratori, Y.; Sugime, H.; Noda, S. J. Phys. Chem. C 2008, 112, 17974.

    15. [15]

      (13) Hou, P. X.; Orikasa, H.; Yamazaki, T.; Matsuoka, K.; Tomita, A.; Setoyama, N.; Fukushima, Y.; Kyotani, T. Chem. Mater. 2005, 17, 5187.

    16. [16]

      (14) Eduardo, C. S.; Florentino, L. U.; Emilio, M. S. ACS Nano 2009, 3, 1913.

    17. [17]

      (15) Yang, Y.; Li, X.; Jiang, J.; Du, H.; Zhao, L.; Zhao, Y. ACS Nano 2010, 4, 5755.

    18. [18]

      (16) ng, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L. Science 2009, 323, 760.

    19. [19]

      (17) Tang, Y.; Allen, B. L.; Kauffman, D. R.; Alexander, S. J. Am. Chem. Soc. 2009, 131, 13200.

    20. [20]

      (18) Yang, S.; Zhao, G. L.; Khosravi, E. J. Phys. Chem. C 2010, 114, 3371.

    21. [21]

      (19) Liu, J.; Rinzler, A. G.; Dai, H. J.; Hafner, J. H., Bradley, R. K.; Boul, P. J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C. B.; Rodriguez-Macias, F.; Shon, Y. S.; Lee, T. R.; Colbert, D. T.; Smalley, R. E. Science, 1998, 280, 1253.

    22. [22]

      (20) Hiura, H.; Ebbesen, T. W.; Tanigaki, K. Adv. Mater. 1995, 7, 275.

    23. [23]

      (21) A , H.; Ohshima, S.; Uchida, K.; Yumura, M. J. Phys. Chem. B 2001, 105, 10453.

    24. [24]

      (22) Hawkins, S. C.; Poole, J. M.; Huynh, C. P. J. Phys. Chem. C 2009, 113, 12976.

    25. [25]

      (23) Li, L. X.; Li, F.; Liu, C.; Cheng, H. M. Carbon 2005, 43, 623.

    26. [26]

      (24) Kang, E. T.; Neoh, K. G.; Tan, K. L. Prog. Polym. Sci. 1998, 23, 277.

    27. [27]

      (25) Wei, X. L.; Fahlman, M.; Epstein, K. J. Macromolecules, 1999, 32, 3114.


  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    3. [3]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    4. [4]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    5. [5]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    6. [6]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    7. [7]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    8. [8]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    9. [9]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    10. [10]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    11. [11]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    12. [12]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    13. [13]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    14. [14]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    15. [15]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    16. [16]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    17. [17]

      Yifei Cheng Jiahui Yang Wei Shao Wanqun Zhang Wanqun Hu Weiwei Li Kaiping Yang . Learning Goes Beyond the Written Word: Practical Insights from the “Leaf Electroplating” Popular Science Experiment. University Chemistry, 2024, 39(9): 319-327. doi: 10.3866/PKU.DXHX202310033

    18. [18]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

    19. [19]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    20. [20]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

Metrics
  • PDF Downloads(4168)
  • Abstract views(5165)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return