Citation: DAI Xian-Qi, LI Yan-Hui, ZHAO Jian-Hua, TANG Ya-Nan. Effects of Vacancy and Boron Doping on Si Adsorption on Graphene[J]. Acta Physico-Chimica Sinica, ;2011, 27(02): 369-373. doi: 10.3866/PKU.WHXB20110224 shu

Effects of Vacancy and Boron Doping on Si Adsorption on Graphene

  • Received Date: 19 August 2010
    Available Online: 5 January 2011

    Fund Project: 国家自然科学基金(60476047) (60476047)河南省高校科技创新人才支持计划(2008HASTIT030)资助项目 (2008HASTIT030)

  • First-principles calculations based on density functional theory were carried out to study the effects of monovacancy and boron doping on Si adsorption on graphene. We found that Si single atom, sitting above the bridge site of defect-free graphene, was the most stable configuration. The spin properties of the C atoms change after Si adsorption. In our calculations, monovacancy and substituting with B atoms enhanced Si adsorption on graphene and monovacancy was more effective than the B dopant. No magnetic moment was observed for the Si adsorbed on these two systems. B doping induces a stable Si adsorption position from the bridge site to the top site and increases the conductivity of the graphene system. By comparison, B doping in the graphene system is relatively stable while the monovacancy system is not.

  • 加载中
    1. [1]

      (1) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S.; Gri rieva, I.; Firsov, A. Science 2004, 306, 666.

    2. [2]

      (2) Pandey, D.; Reifenberger, R.; Piner, R. Surface Science 2008, 602, 1607.

    3. [3]

      (3) Garcia-Sanchez, D.; Van Der Zande, A. M.; Paulo, A. S.; Lassagne, B.; McEuen, P. L.; Bachtold, A. Nano Letters 2008, 8, 1399.

    4. [4]

      (4) Moser, J.; Verdaguer, A.; Jim¨|nez, D.; Barreiro, A.; Bachtold, A. Applied Physics Letters 2009, 92, 123507.

    5. [5]

      (5) Morozov, S. V.; Novoselov, K. S.; Schedin, F.; Jiang, D.; Firsov, A. A.; Geim, A. K. Physical Review B 2005, 72, 201401.

    6. [6]

      (6) Giovannetti, G.; Khomyakov, P. A.; Brocks, G.; Karpan, V. M.; Van den Brink, J.; Kelly, P. J. Physical Rreview Letters 2008, 101, 26803.

    7. [7]

      (7) Chan, K. T.; Neaton, J. B.; Cohen, M. L. Physical Review B 2008, 77, 235430.

    8. [8]

      (8) Sevin li, H.; Topsakal, M.; Durgun, E.; Ciraci, S. Physical Review B 2008, 77, 195434.

    9. [9]

      (9) Zhou, Y. G.; Zu, X. T.; Gao, F.; Xiao, H. Y.; Lv, H. F. Journal of Applied Physics 2009, 105, 104311.

    10. [10]

      (10) Zhou, Y. G.; Zu, X. T.; Gao, F.; Lv, H. F.; Xiao, H. Y. Applied Physics Letters 2009, 95, 123119.

    11. [11]

      (11) Wu, M.; Liu, E. Z.; Jiang, J. Z. Applied Physics Letters 2008, 93, 082504.

    12. [12]

      (12) Lherbier, A.; Blase, X.; Niquet, Y. M.; Triozon, F.; Roche, S. Physical Review Letters 2008, 101, 36808.

    13. [13]

      (13) Wei, D.; Liu, Y.; Wang, Y.; Zhang, H.; Huang, L.; Yu, G. Nano Letters 2009, 9, 1752.

    14. [14]

      (14) Denis, P. A.; Faccio, R.; Mombru, A. W. ChemPhysChem 2009, 10, 715.

    15. [15]

      (15) Chi, M.; Zhao, Y. P. Computational Materials Science 2009, 46, 1085.

    16. [16]

      (16) Endo, M.; Hayashi, T.; Hong, S. H.; Enoki, T.; Dresselhaus, M. S. Journal of Applied Physics 2001, 90, 5670.

    17. [17]

      (17) Woodside, M. T.; McEuen, P. L. Science 2002, 296, 1098.

    18. [18]

      (18) Meunier, V.; Kephart, J.; Roland, C.; Bernholc, J. Physical Review Letters 2002, 88, 75506.

    19. [19]

      (19) Zhang, Y. H.; Zhou, K. G.; u, X. C.; Xie, K. F.; Zhang, H. L.; Peng, Y. Chemical Physics Letters 2010, 484, 266.

    20. [20]

      (20) Colussi, M. L.; Neves, L. P.; Baierle, R. J. Brazilian Journal of Physics 2006, 36, 886.

    21. [21]

      (21) Silva, L. B.; Fagan, S. B.; Mota, R.; Fazzio, A. Nanotechnology 2006, 17, 4088.

    22. [22]

      (22) Aktürk, E.; Ataca, C.; Ciraci, S. Applied Physics Letters 2010, 96, 123112.

    23. [23]

      (23) Rossato, J.; Baierle, R. J.; Fazzio, A.; Mota, R. Nano Letters 2005, 5, 197.

    24. [24]

      (24) Kresse, G.; Hafner, J. Journal of Physics: Condensed Matter 1994, 6, 8245.

    25. [25]

      (25) Perdew, J. P.; Burke, K.; Ernzerhof, M. Physical Review Letters 1996, 77, 3865.

    26. [26]

      (26) Chen, L. J.; Hou, Z. F. Acta Phys. Sin. 2003, 52

    27. [27]

      [陈丽娟; 侯锋; 朱梓忠; 杨 勇. 物理学报 2003, 52.]

    28. [28]

      (27) Yamashita, K.; Saito, M.; Oda, T. Japanese Journal of Applied Physics 2006, 45, 6534.

    29. [29]

      (28) Pereira, V. M.; Guinea, F.; Lopes dos Santos, J. M. B.; Peres, N. M. R.; Castro Neto, A. H. Physical review letters 2006, 96, 36801.

    30. [30]

      (29) Liu, H. Y.; Hou, Z. F.; Zhu, Z. F.; Huang, M. C.; Yang, Y. Chem. J. Chin. Univ., 2004, 8, 1521

    31. [31]

      [刘慧英; 侯铎柱; 朱梓忠; 黄纯; 杨 勇. 高等学校化学学报, 2004, 8, 1521.]

    32. [32]

      (30) Decker, B. F.; Kasper, J. S. Acta Crystallographica 1959, 12, 503.

    33. [33]

      (31) Zhou, Z.; Gao, X.; Yan, J.; Song, D. Carbon 2006, 44, 939.

    34. [34]

      (32) Miwa, R. H.; Martins, T. B.; Fazzio, A. Nanotechnology 2008, 19, 155708.


  • 加载中
    1. [1]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    2. [2]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    3. [3]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    4. [4]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    7. [7]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    8. [8]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    9. [9]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    10. [10]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    11. [11]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    12. [12]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    13. [13]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    14. [14]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    15. [15]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    16. [16]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    17. [17]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    18. [18]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    19. [19]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    20. [20]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

Metrics
  • PDF Downloads(1870)
  • Abstract views(4703)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return