Citation: CHEN Dong-Po, ZHANG Xiao-Dan, WEI Chang-Chun, LIU Cai-Chi, ZHAO Ying. Effect of Blocking Layers Prepared by the Hydrolysis of TiCl4 Solution on the Photovoltaic Performance of a Dye-Sensitized Solar Cell[J]. Acta Physico-Chimica Sinica, ;2011, 27(02): 425-431. doi: 10.3866/PKU.WHXB20110222 shu

Effect of Blocking Layers Prepared by the Hydrolysis of TiCl4 Solution on the Photovoltaic Performance of a Dye-Sensitized Solar Cell

  • Received Date: 20 September 2010
    Available Online: 4 January 2011

    Fund Project: 国家高技术研究发展规划(863) (2007AA05Z436, 2009AA050602) (863) (2007AA05Z436, 2009AA050602) 国家重点基础研究发展规划(973) (2006CB202602, 2006CB202603) (973) (2006CB202602, 2006CB202603) 国家自然科学基金(60976051) (60976051)教育部新世纪人才计划(NCET-08-0295)资助项目 (NCET-08-0295)

  • Blocking layer thin films were prepared on a conductive fluorine-doped tin oxide (FTO) substrate by the hydrolysis of TiCl4 solution with different concentrations. This blocked the recombination between photoelectrons and I3-. Blocking layer compositions were characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The surface morphology and transmittance were determined by field emission scanning electron microscopy (FE-SEM) and UV-visible spectrophotometry. The photovoltaic performance of the dye-sensitized solar cells (DSSC) was measured under AM1.5 illumination and under dark conditions. We found that the blocking layers were composed of TiO2 particles. Increasing the concentration of TiCl4 in solution leads to an increase in the blocking layer thickness. Apart from the increase in thickness, the morphology develops as the concentration increases. The transmittance of FTO decreases after the blocking layers deposit on the surface and the blocking layers prepared using 0.04 mol·L-1 TiCl4 solution can suppress the dark current most efficiently and we thus obtained the highest power conversion efficiency of 7.84% under AM1.5 illumination conditions.

  • 加载中
    1. [1]

      (1) Huang, S. Y.; Schlichtholrl, G.; Nozik, A. J. J. Phys. Chem. B 1997, 101, 2576.

    2. [2]

      (2) Koo, H. J.; Kim, Y. J.; Lee, Y. H.; Lee, W. I.; Kim, K.; Park, N. G. Adv. Mater. 2008, 20, 195.

    3. [3]

      (3) Wang, Q.; Ito, S.; Gr?tzel, M.; Fabregat-Santia , F.; Mora- Seró, I.; Bisquert, J.; Bessho, T.; Imai, H. J. Phys. Chem. B 2006, 110, 25210.

    4. [4]

      (4) Chiba, Y.; Islam, A.; Komiya, R.; Koide, N.; Han, L. Appl. Phys. Let. 2006, 88, 223505.

    5. [5]

      (5) Zhang, Q.; He, Y. Q. Materials Review 2008, 28, 95.

    6. [6]

      (6) Frank, A. J.; Kopidakis, N.; van de Lagemaat, J. Coord. Chem. Rev. 2004, 248, 1165.

    7. [7]

      (7) Ito, S.; Liska, P.; Comte, P.; Gr?tzel, M. Chem. Commun. 2005, 25, 4351.

    8. [8]

      (8) Yoo, B.; Kim, K. J.; Bang, S.Y.; Ko, M. J.; Kim, K. Journal of Electroanalytical Chemistry 2010, 638, 161.

    9. [9]

      (9) Kay, A.; Gr?tzel, M. Chem. Mater. 2002, 14, 2930.

    10. [10]

      (10) van de Lagemaat, J.; Park, N.G.; Frank, A. J. J. Phys. Chem. B 2000, 104, 2044.

    11. [11]

      (11) Bisquert, J.; Garcia-Belmonte, G.; Fabregat-Santia , F.; Ferriols, N. S. J. Phys. Chem. B 2000, 104, 2287.

    12. [12]

      (12) Pichot, F.; Ferrere, S.; Fields, C. L.; Gregg, B. A. J. Phys. Chem. B 2001, 105, 1422.

    13. [13]

      (13) Zhu, K.; Schiff, E. A.; Park, N. G.; Lagemaat, J.; Frank, A. J. Appl. Phys. Lett. 2002, 80, 685.

    14. [14]

      (14) Cameron, P. J.; Peter, L. M. J. Phys. Chem. B 2005, 109, 930.

    15. [15]

      (15) Cameron, P. J.; Peter, L. M. J. Phys. Chem. B 2005, 109, 7392.

    16. [16]

      (16) Cameron, P. J.; Peter, L. M. J. Phys. Chem. B 2003, 107, 14394.

    17. [17]

      (17) Liu, X. Z.; Huang, Z.; Li, K. X.; Li, H.; Li, D. M.; Chen, L. Q. Chin. Phys. Lett. 2006, 9, 2606.

    18. [18]

      (18) Karthikeyan, C. S.; Peter, K.; Wietasch, H.; Thelakkat, M. Sol. Energy Mater. 2007, 91, 432.

    19. [19]

      (19) Burke, A.; Ito, S.; Snaith, H.; Bach, U.; Kwiatkowski, J.; Gr?tzel, M. Nano. Lett. 2008, 8, 977.

    20. [20]

      (20) Xia, J. B.; Masaki, N.; Jiang, K. J.; Yanagida, S. J. Phys. Chem. C 2007, 111, 8092.

    21. [21]

      (21) Xia, J. B.; Masaki, N.; Jiang, K. J.; Yanagida, S. Chem. Commun. 2007, 188, 120.

    22. [22]

      (22) Xia, J. B.; Masaki, N.; Jiang, K. J.; Yanagida, S. J. Phys. Chem. B 2006, 110, 25222.

    23. [23]

      (23) Kavan, L.; Grätzel, M. Electrochim. Acta 1995, 40, 643.

    24. [24]

      (24) Negishi, N.; Takeuchi, K. Sol-Gel Sci. Technol. 2001, 22, 23.

    25. [25]

      (25) Hattori, R.; to, H. Thin Solid Films 2007, 515, 8045.

    26. [26]

      (26) Dong, X.; Tao, J.; Li, Y. Y.; Wang, T.; Zhu, H. Acta Phys. -Chim. Sin. 2009, 25, 1874.

    27. [27]

      [董 祥, 陶 杰, 李莹滢, 汪 涛, 朱 宏. 物理化学学报, 2009, 25, 1874.].


  • 加载中
    1. [1]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    2. [2]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    3. [3]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    4. [4]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    5. [5]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    6. [6]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    7. [7]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    8. [8]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    9. [9]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    10. [10]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    11. [11]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    12. [12]

      Maosen XuPengfei ZhuQinghong CaiMeichun BuChenghua ZhangHong WuYouzhou HeMin FuSiqi LiXingyan LiuIn-situ fabrication of TiO2/NH2−MIL-125(Ti) via MOF-driven strategy to promote efficient interfacial effects for enhancing photocatalytic NO removal activity. Chinese Chemical Letters, 2024, 35(10): 109524-. doi: 10.1016/j.cclet.2024.109524

    13. [13]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    14. [14]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    15. [15]

      Xin JiangHan JiangYimin TangHuizhu ZhangLibin YangXiuwen WangBing Zhao . g-C3N4/TiO2-X heterojunction with high-efficiency carrier separation and multiple charge transfer paths for ultrasensitive SERS sensing. Chinese Chemical Letters, 2024, 35(10): 109415-. doi: 10.1016/j.cclet.2023.109415

    16. [16]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    17. [17]

      Zhen Shi Wei Jin Yuhang Sun Xu Li Liang Mao Xiaoyan Cai Zaizhu Lou . Interface charge separation in Cu2CoSnS4/ZnIn2S4 heterojunction for boosting photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100201-100201. doi: 10.1016/j.cjsc.2023.100201

    18. [18]

      Wenqi Gao Xiaoyan Fan Feixiang Wang Zhuojun Fu Jing Zhang Enlai Hu Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026

    19. [19]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    20. [20]

      Ying HouZhen LiuXiaoyan LiuZhiwei SunZenan WangHong LiuWeijia Zhou . Laser constructed vacancy-rich TiO2-x/Ti microfiber via enhanced interfacial charge transfer for operando extraction-SERS sensing. Chinese Chemical Letters, 2024, 35(9): 109634-. doi: 10.1016/j.cclet.2024.109634

Metrics
  • PDF Downloads(2519)
  • Abstract views(2968)
  • HTML views(31)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return