Citation: CHEN Dong-Po, ZHANG Xiao-Dan, WEI Chang-Chun, LIU Cai-Chi, ZHAO Ying. Effect of Blocking Layers Prepared by the Hydrolysis of TiCl4 Solution on the Photovoltaic Performance of a Dye-Sensitized Solar Cell[J]. Acta Physico-Chimica Sinica, ;2011, 27(02): 425-431. doi: 10.3866/PKU.WHXB20110222 shu

Effect of Blocking Layers Prepared by the Hydrolysis of TiCl4 Solution on the Photovoltaic Performance of a Dye-Sensitized Solar Cell

  • Received Date: 20 September 2010
    Available Online: 4 January 2011

    Fund Project: 国家高技术研究发展规划(863) (2007AA05Z436, 2009AA050602) (863) (2007AA05Z436, 2009AA050602) 国家重点基础研究发展规划(973) (2006CB202602, 2006CB202603) (973) (2006CB202602, 2006CB202603) 国家自然科学基金(60976051) (60976051)教育部新世纪人才计划(NCET-08-0295)资助项目 (NCET-08-0295)

  • Blocking layer thin films were prepared on a conductive fluorine-doped tin oxide (FTO) substrate by the hydrolysis of TiCl4 solution with different concentrations. This blocked the recombination between photoelectrons and I3-. Blocking layer compositions were characterized by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The surface morphology and transmittance were determined by field emission scanning electron microscopy (FE-SEM) and UV-visible spectrophotometry. The photovoltaic performance of the dye-sensitized solar cells (DSSC) was measured under AM1.5 illumination and under dark conditions. We found that the blocking layers were composed of TiO2 particles. Increasing the concentration of TiCl4 in solution leads to an increase in the blocking layer thickness. Apart from the increase in thickness, the morphology develops as the concentration increases. The transmittance of FTO decreases after the blocking layers deposit on the surface and the blocking layers prepared using 0.04 mol·L-1 TiCl4 solution can suppress the dark current most efficiently and we thus obtained the highest power conversion efficiency of 7.84% under AM1.5 illumination conditions.

  • 加载中
    1. [1]

      (1) Huang, S. Y.; Schlichtholrl, G.; Nozik, A. J. J. Phys. Chem. B 1997, 101, 2576.

    2. [2]

      (2) Koo, H. J.; Kim, Y. J.; Lee, Y. H.; Lee, W. I.; Kim, K.; Park, N. G. Adv. Mater. 2008, 20, 195.

    3. [3]

      (3) Wang, Q.; Ito, S.; Gr?tzel, M.; Fabregat-Santia , F.; Mora- Seró, I.; Bisquert, J.; Bessho, T.; Imai, H. J. Phys. Chem. B 2006, 110, 25210.

    4. [4]

      (4) Chiba, Y.; Islam, A.; Komiya, R.; Koide, N.; Han, L. Appl. Phys. Let. 2006, 88, 223505.

    5. [5]

      (5) Zhang, Q.; He, Y. Q. Materials Review 2008, 28, 95.

    6. [6]

      (6) Frank, A. J.; Kopidakis, N.; van de Lagemaat, J. Coord. Chem. Rev. 2004, 248, 1165.

    7. [7]

      (7) Ito, S.; Liska, P.; Comte, P.; Gr?tzel, M. Chem. Commun. 2005, 25, 4351.

    8. [8]

      (8) Yoo, B.; Kim, K. J.; Bang, S.Y.; Ko, M. J.; Kim, K. Journal of Electroanalytical Chemistry 2010, 638, 161.

    9. [9]

      (9) Kay, A.; Gr?tzel, M. Chem. Mater. 2002, 14, 2930.

    10. [10]

      (10) van de Lagemaat, J.; Park, N.G.; Frank, A. J. J. Phys. Chem. B 2000, 104, 2044.

    11. [11]

      (11) Bisquert, J.; Garcia-Belmonte, G.; Fabregat-Santia , F.; Ferriols, N. S. J. Phys. Chem. B 2000, 104, 2287.

    12. [12]

      (12) Pichot, F.; Ferrere, S.; Fields, C. L.; Gregg, B. A. J. Phys. Chem. B 2001, 105, 1422.

    13. [13]

      (13) Zhu, K.; Schiff, E. A.; Park, N. G.; Lagemaat, J.; Frank, A. J. Appl. Phys. Lett. 2002, 80, 685.

    14. [14]

      (14) Cameron, P. J.; Peter, L. M. J. Phys. Chem. B 2005, 109, 930.

    15. [15]

      (15) Cameron, P. J.; Peter, L. M. J. Phys. Chem. B 2005, 109, 7392.

    16. [16]

      (16) Cameron, P. J.; Peter, L. M. J. Phys. Chem. B 2003, 107, 14394.

    17. [17]

      (17) Liu, X. Z.; Huang, Z.; Li, K. X.; Li, H.; Li, D. M.; Chen, L. Q. Chin. Phys. Lett. 2006, 9, 2606.

    18. [18]

      (18) Karthikeyan, C. S.; Peter, K.; Wietasch, H.; Thelakkat, M. Sol. Energy Mater. 2007, 91, 432.

    19. [19]

      (19) Burke, A.; Ito, S.; Snaith, H.; Bach, U.; Kwiatkowski, J.; Gr?tzel, M. Nano. Lett. 2008, 8, 977.

    20. [20]

      (20) Xia, J. B.; Masaki, N.; Jiang, K. J.; Yanagida, S. J. Phys. Chem. C 2007, 111, 8092.

    21. [21]

      (21) Xia, J. B.; Masaki, N.; Jiang, K. J.; Yanagida, S. Chem. Commun. 2007, 188, 120.

    22. [22]

      (22) Xia, J. B.; Masaki, N.; Jiang, K. J.; Yanagida, S. J. Phys. Chem. B 2006, 110, 25222.

    23. [23]

      (23) Kavan, L.; Grätzel, M. Electrochim. Acta 1995, 40, 643.

    24. [24]

      (24) Negishi, N.; Takeuchi, K. Sol-Gel Sci. Technol. 2001, 22, 23.

    25. [25]

      (25) Hattori, R.; to, H. Thin Solid Films 2007, 515, 8045.

    26. [26]

      (26) Dong, X.; Tao, J.; Li, Y. Y.; Wang, T.; Zhu, H. Acta Phys. -Chim. Sin. 2009, 25, 1874.

    27. [27]

      [董 祥, 陶 杰, 李莹滢, 汪 涛, 朱 宏. 物理化学学报, 2009, 25, 1874.].


  • 加载中
    1. [1]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    2. [2]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    3. [3]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    4. [4]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    5. [5]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    6. [6]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    7. [7]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    8. [8]

      Xing Xiao Yunling Jia Wanyu Hong Yuqing He Yanjun Wang Lizhi Zhao Huiqin An Zhen Yin . Sulfur-defective ZnIn2S4 nanosheets decorated by TiO2 nanosheets with exposed {001} facets to accelerate charge transfer for efficient photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100474-100474. doi: 10.1016/j.cjsc.2024.100474

    9. [9]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    10. [10]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    11. [11]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    12. [12]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    13. [13]

      Zhiqiang WangYajie GaoTianjun WangWei ChenZefeng RenXueming YangChuanyao Zhou . Photocatalyzed oxidation of water on oxygen pretreated rutile TiO2(110). Chinese Chemical Letters, 2025, 36(4): 110602-. doi: 10.1016/j.cclet.2024.110602

    14. [14]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    15. [15]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    16. [16]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    17. [17]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    18. [18]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    19. [19]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    20. [20]

      Jiatong LiLinlin ZhangPeng HuangChengjun Ge . Carbon bridge effects regulate TiO2–acrylate fluoroboron coatings for efficient marine antifouling. Chinese Chemical Letters, 2025, 36(2): 109970-. doi: 10.1016/j.cclet.2024.109970

Metrics
  • PDF Downloads(2519)
  • Abstract views(3043)
  • HTML views(35)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return