Citation: ZHONG Chong-Gui, FANG Jing-Huai, YANG Jian-Hua, DONG Zheng-Chao, JIANG Xue-Fan. Electronic and Band Structures of Hexa nal Multiferroic HoMnO3[J]. Acta Physico-Chimica Sinica, ;2011, 27(02): 388-394. doi: 10.3866/PKU.WHXB20110220 shu

Electronic and Band Structures of Hexa nal Multiferroic HoMnO3

  • Received Date: 2 August 2010
    Available Online: 31 December 2010

    Fund Project: 国家自然科学基金(10974104, 50832002, 10874021, 30970754) (10974104, 50832002, 10874021, 30970754)江苏省自然科学基金(BK2006047, BK2008183) (BK2006047, BK2008183)

  • We investigated the magnetism, electronic and band structures of hexa nal HoMnO3 using density functional theory (DFT) within the generalized gradient approximation (GGA) and combined this with the projector augmented wave (PAW) method. The relative experimental results are explained using non-collinear magnetic structure calculations. The calculations show that the total energy of the unit cell decreases and the energy gap as well as magnetic moment of Mn3+ increases. Each atom coordinate was close to the experimentally measured values and the electronic densities of states of the HoMnO3 qualitatively agreed with the results from X-ray absorption spectroscopy, when the noncollinear triangular antiferromagnetic configurations of the Mn3+ ions in the ab plane were taken into account. According to the densities of states and band structure analysis, as calculated within the noncollinear magnetic structure, we found that the two experimentally determined optical absorption peaks near 1.7 and 2.3 eV were due to interband transitions between the oxygen states that hybridize strongly with different Mn orbitals and the Mn [3d3z2-r2] state. The strong orbital hybridization between Ho 5d and O(3, 4) 2p in the plane drives the ferroelectric polarization of the HoMnO3 to the ab plane.

  • 加载中
    1. [1]

      (1) Wang, K. F.; Liu, J. M.; Ren, Z. F. Adv. Phys. 2009, 58, 321.

    2. [2]

      (2) Cheong, S.W.; Mostovoy, M. Nature Mater. 2007, 6, 13.

    3. [3]

      (3) Zhong, C. G.; Jiang, Q.; Dong, Z. C.; Fang, J. H.; Cao, H. X. Acta. Phys. -Chim. Sin. 2010, 26, 769.

    4. [4]

      [仲崇贵, 蒋青, 董正超, 方靖淮, 曹海霞. 物理化学学报, 2010, 26, 769.]

    5. [5]

      (4) Lottermoser, T.; Lonkai, T.; Amann, U.; Hohlwein, D.; Ihringer, J.; Fiebig, M. Nature 2004, 43, 541.

    6. [6]

      (5) Hill, N. A. J. Phys. Chem. B 2000, 104, 6694.

    7. [7]

      (6) Nandi, S.; Kreyssig, A.; Tan, L.; Kim, J.W.; Yan, J. Q.; Lang, J. C.; Haskel, D.; McQueeney, R. J.; ldman, A. I. Phys. Rev. Lett. 2008, 100, 217201.

    8. [8]

      (7) Tyson, T. A.;Wu, T.; Ahn, K. H.; Kim, S. B.; Cheong, S.W. Phys. Rev. B 2010, 81, 054101.

    9. [9]

      (8) Ren, C. Y. Phys. Rev. B 2009, 79, 125113.

    10. [10]

      (9) Katsufuji, T.; Mori, M.; Masaki, M.; Moritomo, Y.; Yamamoto, N.; Takagi, H. Phys. Rev. B 2001, 64, 104419.

    11. [11]

      (10) Gélard, I.; Dubourdieu, C.; Pailhès, S.; Petit, S.; Simon, C. Appl. Phys. Lett. 2008, 92, 232506.

    12. [12]

      (11) Lemyre, J. C.; Poirier, M. Phys. Rev. B 2009, 79, 094423.

    13. [13]

      (12) Ueland, B. G.; Lynn, J.W.; Laver, M.; Choi, Y. J.; Cheong, S. W. Phys. Rev. Lett. 2010, 104, 147204.

    14. [14]

      (13) Lee, S.; Piro v, A.; Kang, M.; Jang, K. H.; Yonemura, M.; amiyama, T.; Cheong, S.W.; Sozzo, S.; Shin, N.; Kimura, H.; oda, Y.; Park, J. G. Nature 2008, 451, 805.

    15. [15]

      (14) Fabrèges, X.; Petit, S.; Mirebeau, I.; Pailhès, S.; Pinsard, L.; orget, A.; Fernandez-Diaz, M. T.; Porcher, F. Phys. Rev. Lett. 2009, 103, 067204.

    16. [16]

      (15) Hur, N.; Jeong, I. K.; Hundley, M. F.; Kim, S. B.; Cheong, S.W. Phys. Rev. B 2009, 79, 134120.

    17. [17]

      (16) Van Aken, B. B.; Palstra, T. T. M.; Filippetti, A.; Spaldin, N. A. Nature Mater. 2004, 3, 164.

    18. [18]

      (17) Cho, D. Y.; Kim, J. Y.; Park, B. G.; Rho, K. J.; Park, J. H.; Noh, H. J.; Kim, B. J.; Oh, S. J.; Park, H. M.; Ahn, J. S.; Ishibashi, H.; heong, S.W.; Lee, J. H.; Murugavel, P.; Noh, T.W.; Tanaka, A.; Jo, T. Phys. Rev. Lett. 2007, 98, 217601.

    19. [19]

      (18) Zhong, C. G.; Jiang, Q.; Zhang, H.; Jiang, X. F. Appl. Phys. Lett. 2009, 94, 224107.

    20. [20]

      (19) Dang, H. L.;Wang, C. Y.; Yu, T. Acta Phys. Sin. 2007, 56, 69.

    21. [21]

      [党宏丽, 王崇愚, 于涛. 物理学报, 2007, 56, 369.]

    22. [22]

      (20) Wu, G. X.; Zhang, J. Y.;Wu, Y. Q.; Li, Q.; Zhou, G. Z.; Bao, X.; H. Acta Phys. -Chim. Sin. 2008, 24, 55.

    23. [23]

      [吴广新, 张捷宇, 永全, 李谦, 周国治, 包新华. 物理化学学报, 2008, 24, 5.]

    24. [24]

      (21) Liu, J.; Liu, Y.; Chen, X. M.; Dong, H, N. Acta Phys. -Chim. Sin. 2009, 25, 107.

    25. [25]

      [刘俊, 刘宇, 陈希明, 董会宁. 物理化学学报, 2009, 25, 107.]

    26. [26]

      (22) Choi,W. S.; Kim, D. G.; Seo, S. S. A.; Moon, S. J.; Lee, D.; ee, J. H.; Lee, H. S. Phys. Rev. B 2008, 77, 045137.

    27. [27]

      (23) Lorenz, B.; Litvinchuk, A. P.; spodinov, M. M.; Chu, C.W. Phys .Rev. Lett. 2004, 92, 087204.

    28. [28]

      (24) Brown, P. J.; Chatterji, T. Phys. Rev. B 2008, 77, 104407.

    29. [29]

      (25) Muñoz, A.; Alonso, J. A.; Martínez-Lope, M. J.; Casáis, M. T.; artínez, J. L.; Fernández-Díaz, M. T. Chem. Mater. 2001, 13, 497.

    30. [30]

      (26) Fiebig, M.; Lottermoser, T.; Pisarec, R. V. J. Appl. Phys. 2003, 3, 8194.

    31. [31]

      (27) Lonkai, T.; Hohlwein, D.; Ihringer, J.; Prandl,W. Appl. Phys. A: ater. Sci. Process. 2002, 74, S843.

    32. [32]

      (28) Vajk, O. P.; Kenzelmann, M.; Lynn, J.W.; Kim, S. B.; Cheong, S.W. Phys. Rev. Lett. 2005, 94, 087601.

    33. [33]

      (29) Blochl, P. E. Phys. Rev. B 1994, 50, 17953.

    34. [34]

      (30) Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758.

    35. [35]

      (31) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 7, 3865.

    36. [36]

      (32) Cruz, C. D.; Yen, F.; Lorenz, B.;Wang, Y. Q.; Sun, Y. Y.; spodinov, M. M.; Chu, C.W. Phys. Rev. B 2005, 71, 060407.

    37. [37]

      (33) Souchkov, A. B.; Simpson, J. R.; Quijada, M.; Ishibashi, H.; Hur, N.; Ahn, J. S.; Cheong, S.W.; Millis, A. J.; Drew, H. D. Phys. Rev. Lett. 2003, 91, 027203.

    38. [38]

      (34) Kang, J. S.; Han, S.W.; Park, J. G.;Wi, S. C.; Lee, S. S.; Kim, G.; Song, H. J.; Shin, H. J.; Jo,W.; Min, B. I. Phys. Rev. B 2005, 1, 092405.

    39. [39]

      (35) Lee, J. S.; Lee, Y. S.; Noh, T.W.; Char, K.; Park, J.; Oh, S.H.; ark, J. H.; Eom, C. B.; Takeda, T.; Kanno, R. Phys. Rev. B 2001, 64, 245107.


  • 加载中
    1. [1]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    2. [2]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    3. [3]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    4. [4]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    5. [5]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    6. [6]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    7. [7]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    8. [8]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    9. [9]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    10. [10]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    11. [11]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    12. [12]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    13. [13]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    14. [14]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    15. [15]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    16. [16]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    17. [17]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    18. [18]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    19. [19]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    20. [20]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

Metrics
  • PDF Downloads(1388)
  • Abstract views(2026)
  • HTML views(29)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return