Citation: WANG Dan, ZHANG Yan-Ling, QIAO Yan-Jiang. Support Vector Machine and KStar Models Predict the o-Dealkylation Reaction Mediated by Cytochrome P450[J]. Acta Physico-Chimica Sinica, ;2011, 27(02): 343-351. doi: 10.3866/PKU.WHXB20110219 shu

Support Vector Machine and KStar Models Predict the o-Dealkylation Reaction Mediated by Cytochrome P450

  • Received Date: 13 September 2010
    Available Online: 29 December 2010

    Fund Project: 教育部博士点基金(20092213120006) (20092213120006)中医药行业专项(200707010)资助项目 (200707010)

  • We constructed a nested prediction model based on support vector machines (SVM) and the KStar method. The models consisted of a molecular shape discriminative model for metabolites, which was used to predict the o-dealkalytion reaction mediated by cytochrome P450, in addition to the metabolic site discriminative model, which was used to judge C―O bond breaking in molecules. We calculated 1280 molecular descriptors including topological descriptors, 2D autocorrelation descriptors, and geometric descriptors to characterize the physicochemical properties of 272 molecules. A molecular shape discriminative model, represented by the classification models, was constructed by machine learning methods including SVM, decision tree, Bayesian network, and k nearest neighbors method. The results showed that the SVM model was superior to the other methods. Twenty-six quantum chemical features including charge-related, valency-related, and energy-related features were calculated for the 538 metabolism sites for the o-dealkylation reaction in the metabolic site discriminative model. Machine learning methods including decision tree, Bayesian network, KStar, and the artificial neural network method were also used to develop classification models. It showed that the KStar model with its prediction accuracy, sensitivity, and specificity of more than 90% outperformed the other classification models. Fifteen traditional Chinese medicine medicinal molecules were used to validate the model. The results showed that the nested models had a certain accuracy and could contribute to the prediction of metabolites from traditional Chinese medicines.

  • 加载中
    1. [1]

      (1) Nelson, D. R.; Kamataki, T.;Waxman, D. J.; Guengerich, F. P.; Estabrook, R.W.; Feyereisen, R.; nzalez, F. J.; Coon, M. J.; Gunsalus, I. C.; toh, O.; Okuda, K.; Nebert, D.W. DNA Cell Biol. 1993, 12(1), 1.

    2. [2]

      (2) Ingelman-Sundberg, M. Toxicol. Appl. Pharmacol. 2005, 207(2), 52.

    3. [3]

      (3) Lin,W. X. Asia-Pacific Traditional Medicine 2009, 5(7), 5.

    4. [4]

      [林伟香. 亚太传统医药, 2009, 5(7), 5.]

    5. [5]

      (4) Embrechts, M. J.; Ekins, S. Drug Metab. Dispos. 2007, 35(3), 325.

    6. [6]

      (5) Zheng, M. Y.; Luo, X. M.; Shen, Q. C.;Wang, Y.; Du, Y.; Zhu, W. L.; Jiang, H. L. Bioinformatics 2009, 25, 1251.

    7. [7]

      (6) MDL Metabolite Database, 2010; MDL Information Systems, Inc.: California, 2010.

    8. [8]

      (7) MDDR, 2010; MDL Information Systems and Prous Science, Inc.: California, 2010.

    9. [9]

      (8) TsarTM, 3.3; Oxford Molecular Limited: England, 2000.

    10. [10]

      (9) Todeschini, R.; Consonni, V.; Pavan, M. Dra n, 2.1; Milano Chemometrics and QSAR Research Group: Milano, 2002.

    11. [11]

      (10) Todeschini, R.; Consonni, V. Handbook of Molecular Descriptors; Wiley-VCH:Weinheim, 2000.

    12. [12]

      (11) Weka, 3.6.0; The university ofWaikato: New Zealand, 2008.

    13. [13]

      (12) Witten, L. H.; Frank, E. Data Mining Practical Machine Learning Tools and Techniques, 2nd ed; China Machine Press: Beijing, 2006; pp 282-283; translated by Dong, L., Qiu, Q., Yu, X. F.,Wu, S. Q., Sun, L. Y.

    14. [14]

      [Witten, L. H.; Frank, E. 数据挖 掘: 实用机器学习技术. 董琳, 邱泉, 于晓峰, 吴韶群, 孙 立俊, 译. 北京: 机械工业出版社, 2006: 282-283.]

    15. [15]

      (13) Galvão, R. K. H.; Araujo, M. C. U.; José, J. E.; Pontes, M. J. C.; Silva, E. C.; Saldanha, T. C. B.Talanta 2005, 67, 736.

    16. [16]

      (14) Vapink, V. The Nature of Statistical Learning Theory; Springer Verlag: New York, 2000.

    17. [17]

      (15) Yang, Y.; Zhang, Y. L.; Qiao, Y. J. World Science and Technology-Modernization of Traditional Chinese Medicine 2009, 11, 783.

    18. [18]

      [杨晔, 张燕玲, 乔延江. 世界科学技术-中医 药现代化, 2009, 11, 783.]

    19. [19]

      (16) Liu, R. X.; Shi, X. Y.; Qiao, Y. J. Chinese Journal of Experimental Traditional Medical Formulae 2009, 15(6), 89.

    20. [20]

      [刘瑞新, 史新元, 乔延江. 中国实验方剂学杂志, 2009, 15(6), 89.]

    21. [21]

      (17) Lin, Z. R. Libsvm, 2.9; National Taiwan University: Taiwan, 2009.

    22. [22]

      (18) Fu, Y. Y.; Ren, D. Science and Technology Innovation Herald, 2010, No. 9, 6.

    23. [23]

      [付元元, 任东. 科技创新导报, 2010, No. 9, 6.]

    24. [24]

      (19) Stewart, J. J. P. Mopac, 2009; Stewart Computational Chemistry: Colorado Springs, 2009.

    25. [25]

      (20) Cleary, J. G.; Trigg, L. E. K. An Instance-based Learner Using an Entropic Distance Measure. In Proceedings of the 12th International Conference on Machine Learning, 12th International Conference on Machine Learning, California, 1995; Morgan Kaufmann, Eds.; Morgan Kaufmann: San Francisco, 1995; pp108-114.

    26. [26]

      (21) McLachlan, G. J.; Do, K.A.; Ambroise, C. Analyzing Microarray Gene Expression Data;Wiley: New York, 2004.

    27. [27]

      (22) Yang, X.W. Absorption, Distribution, Metabolism, Excretion, Toxicity and Activity of the Chemical Constituents in Traditional Chinese Medicines; China Medical Science and Technology Press: Beijing, 2006.

    28. [28]

      [杨秀伟. 中药成分的吸收 分布代谢排泄毒性及药效. 北京: 中国医药科技出版社, 2006.]

    29. [29]

      (23) Sangster, S. A.; Caldwell, J.; Smith, R. L.; Farmer, P. B. Food Chem. Toxicol. 1984, 22, 695.

    30. [30]

      (24) Sangster, S. A.; Caldwell, J.; Smith, R. L. Food Chem. Toxicol. 1984, 22, 707.

    31. [31]

      (25) Vincenzi, M.; Maialetti, F.; Scazzocchio, B.; Silano, M. Fitoterapia 2000, 71, 725.


  • 加载中
    1. [1]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    2. [2]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    3. [3]

      Daojuan Cheng Fang Fang . Exploration and Implementation of Science-Education Integration in Organic Chemistry Teaching for Pharmacy Majors: A Case Study on Nucleophilic Substitution Reactions of Alkyl Halides. University Chemistry, 2024, 39(11): 72-78. doi: 10.12461/PKU.DXHX202403105

    4. [4]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    7. [7]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    8. [8]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    9. [9]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    10. [10]

      Chunyang Zheng Shiyu Liu Nuo Yi Hong Shang . The Adventures in the Kingdom of Plant Pigments. University Chemistry, 2024, 39(9): 170-176. doi: 10.3866/PKU.DXHX202308085

    11. [11]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    12. [12]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    13. [13]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    14. [14]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    15. [15]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    16. [16]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    17. [17]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    18. [18]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    19. [19]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    20. [20]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

Metrics
  • PDF Downloads(1231)
  • Abstract views(2490)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return