Citation: YU Bo, LIU Ming-Yi, ZHANG Wen-Qiang, ZHANG Ping, XU Jing-Ming. Polarization Loss of Single Solid Oxide Electrolysis Cells and Microstructural Optimization of the Cathode[J]. Acta Physico-Chimica Sinica, ;2011, 27(02): 395-402. doi: 10.3866/PKU.WHXB20110214
-
High temperature steam electrolysis (HTSE),which is the electrolysis of steam at high temperature with high efficiency using planar solid oxide electrolysis cell (SOEC) technology, has received an increasing amount of international interest because of its potential for large-scale hydrogen production using nuclear hydrogen in future. However, it is of great importance to control polarization energy loss and performance degradation for a practical HTSE process. In this paper, the distributions of the polarization resistances of the LSM/YSZ/Ni-YSZ (LSM: Sr doped LaMnO3; YSZ: Y2O3 stabilized ZrO2) cell under a real operating state and using different operating modes were investigated by electrochemical impedance spectroscopy (EIS). We discussed the differences between the SOEC and the solid oxide fuel cell (SOFC) while the steam diffusion process in the cathode support layer of SOEC was determined to be the rate-determining step. Based on the above-mentioned research, the microstructure of the cathode support layer was adjusted and optimized by polymethyl methacrylate (PMMA) pore formers. The results show that the SOEC cell gives much better performance after the optimization. The porosity increased by 50% when PMMA was used. The hydrogen production rate was as high as 328.1 mL·cm-2?h-1 (nominal) when using an electrolysis voltage of 1.3 V, which was about 2 times as that of the starch pore formers. The cell was operated stably for more than 50 h. Our research provides theoretical data and establishes a technical foundation for further study into and application of this novel technology.
-
-
[1]
(1) Stoots, C. M.; O′Brien, J. E.; Condie, K. G.; Hartvigsen, J. J. Int. J. Hydrog. Energy 2010, 35, 4861.
-
[2]
(2) Jensen, S. H.; Sun, X. F.; Ebbesen, S. D., Knibbe, R.; ogensen, M. Int. J. Hydrog. Energy 2010, 35, 9544.
-
[3]
(3) Yu, B.; Zhang,W. Q.; Xu, J. M.; Chen, J. Int. J. Hydrog. Energy 2010, 35, 2829.
-
[4]
(4) Hino, R.; Haga, K.; Aita, H.; Sekitab, K. Nucl. Eng. Des. 2004, 33, 363.
-
[5]
(5) Herring, J. S.; O′Brien, J. E.; Stoots, C. M.; Hawkes, G. L.; artvigsen, J. J.; Shahnam, M. Int. J. Hydrog. Energy 2007, 32, 40.
-
[6]
(6) Zhang,W. Q.; Yu, B.; Chen, J.; Xu, J. M. Prog. Chem. 2008, 20, 78.
-
[7]
[张文强, 于波, 陈靖, 徐景明. 化学进展, 2008, 20, 78.]
-
[8]
(7) Liu, M. Y.; Yu, B.; Chen, J.; Xu, J. M. J. Power Sources 2008, 77, 493.
-
[9]
(8) Yildiz, B.; Kazimi, M. S. Int. J. Hydrog. Energy 2006, 31, 77.
-
[10]
(9) Stoots, C. M.; O′Brien, J. E.; Herring, J. S.; Hartvigsen, J. J. J. Fuel Cell Sci. Tech. 2009, 6, 011014.
-
[11]
(10) Bidrawn, F.; Kim, G.; Corre, G.; Irvine, J. T. S.; Vohs, J. M.; orte, R. J. Electrochem. Solid State Lett. 2008, 11, B167.
-
[12]
(11) Shao, Z. P.; Haile, S. M. Nature 2004, 431, 170.
-
[13]
(12) Xin, X. S.;Wang, S. R.; Zhu, Q. S.; Xu, Y.;Wen, T. L. Electrochem. Commun. 2010, 12, 40.
-
[14]
(13) Wang,W. G.; Mogensen, M. Solid State Ionics 2005, 176, 457.
-
[15]
(14) Han, M. F.; Peng, S. P. Solid Oxide Fuel Cell Components and anufacture Processes; Science Press: Beijing, 2004; pp 23-26.
-
[16]
[韩敏芳, 彭苏萍. 固体氧化物燃料电池材料及制备. 京: 科学出版社, 2004: 23-26.]
-
[17]
(15) Jensen, S. H.; Mogensen, M. Perspectives of High Temperature lectrolysis Using SOEC. 19thWorld Energy Congress: Sydney (AU), 2004.
-
[18]
(16) Liang, M. D.; Yu, B.;Wen, M. F.; Chen, J.; Xu, J. M.; Zhai, Y. C. J. Power Sources 2009, 190, 341.
-
[19]
(17) Yu, B.; Zhang,W. Q.; Chen, J.; Xu, J. M. Int. J. Hydrog. Energy 2008, 33, 6873.
-
[20]
(18) Huang, Q. A.; Hui, R.;Wang, B.W.; Zhang, J. J. Electrochimica Acta 2007, 52, 8144.
-
[21]
(19) Sohal, M. S. Degradation in Solid Oxide Cells during High emperature Electrolysis.Workshop on Degradation in Solid xide Electrolysis Cells and Strategies for its Mitigation, hoenix, 2008.
-
[1]
-
-
[1]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[2]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[3]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[4]
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
-
[5]
Kaihui Huang , Dejun Chen , Xin Zhang , Rongchen Shen , Peng Zhang , Difa Xu , Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020
-
[6]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[7]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[8]
Asif Hassan Raza , Shumail Farhan , Zhixian Yu , Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020
-
[9]
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
-
[10]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[11]
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
-
[12]
Bo YANG , Gongxuan LÜ , Jiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346
-
[13]
Zhuoming Liang , Ming Chen , Zhiwen Zheng , Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029
-
[14]
Jianyin He , Liuyun Chen , Xinling Xie , Zuzeng Qin , Hongbing Ji , Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030
-
[15]
Wenxiu Yang , Jinfeng Zhang , Quanlong Xu , Yun Yang , Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014
-
[16]
Yue Zhao , Yanfei Li , Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001
-
[17]
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
-
[18]
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
-
[19]
Wenjiang LI , Pingli GUAN , Rui YU , Yuansheng CHENG , Xianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289
-
[20]
Zhengyu Zhou , Huiqin Yao , Youlin Wu , Teng Li , Noritatsu Tsubaki , Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010
-
[1]
Metrics
- PDF Downloads(1768)
- Abstract views(2326)
- HTML views(39)