Citation: LU Ting, WANG Xiao-Dong, ZHANG Tao. Gelation of n-Butanol by a Catanionic Surfactant System[J]. Acta Physico-Chimica Sinica, ;2011, 27(02): 486-490. doi: 10.3866/PKU.WHXB20110211 shu

Gelation of n-Butanol by a Catanionic Surfactant System

  • Received Date: 13 October 2010
    Available Online: 23 December 2010

    Fund Project: 国家自然科学基金(21003124) (21003124)中国科学院知识创新工程重要方向(YYYJ0703)资助项目 (YYYJ0703)

  • The gelation of n-butanol was realized by a mixture of cationic and anionic surfactants (referred to as “catanionic surfactant”). In this study, we used sodium laurate/cetyltrimethylammonium bromide (SL/CTAB) as the catanionic surfactant. The rheological properties and microstructures of the n-butanol gel were studied using a rheometer and scanning electron microscopy (SEM). We found that the concentration and mole ratio of the catanionic surfactant affected the formation of the gel and n-butanol was only efficiently gelled in the presence of the catanionic surfactant at a suitable concentration and mole ratio. When we fixed the concentration of one component in the catanionic surfactant system, the gel viscosity increased with the concentration of the other component on the basis of gel formation. This gel was a non-Newtonian fluid and showed a shear-thinning property in rheological experiments. In addition, SEM results showed that the gel had a representative three-dimensional network structure, which was composed of zonal fibers with uniform thickness. Further investigation indicates that the hydrophobic effect between the hydrocarbon chains, the electrostatic attraction between the polar headgroups, and the hydrogen bond interaction between the surfactants and n-butanol play an important role in gel formation.

  • 加载中
    1. [1]

      (1) Terech, P.;Weiss, R. G. Chem. Rev. 1997, 97, 3133.

    2. [2]

      (2) Lee, K. Y.; Mooney, D. J. Chem. Rev. 2001, 101, 1869.

    3. [3]

      (3) Xing, B. G.; Yu, C.W.; Chow, K. H.; Ho, P. L.; Fu, D. G.; Xu, B. J. Am. Chem. Soc. 2002, 124, 14846.

    4. [4]

      (4) de Loos, M.; Feringa, B. L.; van Esch, J. H. Eur. J. Org. Chem. 2005, No. 17, 3615.

    5. [5]

      (5) Liu, K. Q.; Chen, T.; Zhang, Y.; Fu, Q. J.; Fang, Y. Chin. J. xplos. Propellants 2006, 29, 1.

    6. [6]

      [刘凯强, 陈钿, 张颖, 全军, 房喻. 火炸药学报, 2006, 29, 1.]

    7. [7]

      (6) Yang, Z. M.; Liang, G. L.; Xu, B. Acc. Chem. Res. 2008, 41, 15.

    8. [8]

      (7) Lu, T.; Huang, J. B.; Li, Z. H.; Jia, S. K.; Fu, H. L. J. Phys. Chem. B 2008, 112, 2909.

    9. [9]

      (8) Liu, J.; He, P. L.; Yan, J. L.; Fang, X. H.; Peng, J. X.; Liu, K. Q.; ang, Y. Adv. Mater. 2008, 20, 2508.

    10. [10]

      (9) Koumura, N.; Kudo, M.; Tamaoki, N. Langmuir 2004, 20, 9897.

    11. [11]

      (10) Estroff, L. A.; Hamilton, A. D. Chem. Rev. 2004, 104, 1201.

    12. [12]

      (11) Liu, K. Q.; Qu, Y. L.;Wang, M. Z.; Hu, D. D.; Fang, Y.;Wang, N. F. Chin. J. Explos. Propellants 2003, 26, 23.

    13. [13]

      [刘凯强, 屈育 , 王明珍, 胡道道, 房喻, 王宁飞. 火炸药学报, 2003, 26, 3.]

    14. [14]

      (12) Matsumoto, S.; Yamaguchi, S.; Ueno, S.; Komatsu, H.; Ikeda, M.; Ishizuka, K.; Iko, Y.; Tabata, K. V.; Aoki, H.; Ito, S.; Noji, H.; Hamachi, I. Chem. Eur. J. 2008, 14, 3977.

    15. [15]

      (13) Lin, Y. Y.; Qiao, Y.; Yan, Y.; Huang, J. B. Soft Matter 2009, 5, 047.

    16. [16]

      (14) Mueller, D. C.; Turns, S. R. J. Propul. Power 1996, 12, 591.

    17. [17]

      (15) Migliaro, F.W.; Manke, S. A.; Rothgery, E. F.; Knollmueller, K. . Liquid or Gel Propellant Useful in Rockets or Thrusters- ontains Oxidiser and Fuel Consisting of Reduced Volatility ubstd. Hydrazine Cpd(s). US Patent 5433802, 1995-07-18.

    18. [18]

      (16) Yan, D. Q.; Zhou, H. M.; Shan, J. S. J. Rocket Propul. 2003, 29, 8.

    19. [19]

      [闫大庆, 周宏民, 单建胜. 火箭推进, 2003, 29, 38.]

    20. [20]

      (17) Atlantic Res Corp. Gelled Hydrazine Propellant Compositions- ontg Hydrazine Nitrate and Finely Divided Metal. US Patent 811970, 1974-05-21.

    21. [21]

      (18) Ishikawajima Harima Heavy Ind. Supply Method of Gelling ropellant Used as Fuel for Missile, Rocket-Involves Mixing alt or Alkali to Gelling Propellant in Tank to Liquefy It, and ending Out Liquefied Propellant from Tank. JP Patent 075133, 2008-04-16.

    22. [22]

      (19) Fu, Q. J.; Du, Z. G.; Lan, H. P.; Yu, S. T.; Yang, C. J. Rocket Propul. 2006, 32, 48.

    23. [23]

      [符全军, 杜宗罡, 兰海平, 鱼升堂, 超. 火箭推进, 2006, 32, 48.]

    24. [24]

      (20) Frankel, M. B.;Weber, J. F. New 4-Azido-4,4-Di:nitro-1- utanol and Derivs.-Used in Explosives and Propellants, Prepd. rom 4,4-Di:nitro-1-Butanol and Acetyl Chloride. US Patent 795593, 1989-01-03.

    25. [25]

      (21) Wang,W. J.; Tang, S. Q. Chem. Propellants Polym. Mater. 2004, 2, 30.

    26. [26]

      [王万军, 唐松青. 化学推进剂与高分子材料, 2004, 2, 0.]

    27. [27]

      (22) Wu, Z. J. Journal of Astronautics 2006, 27, 448.

    28. [28]

      [吴志坚. 宇航 报, 2006, 27, 448.]

    29. [29]

      (23) He, F.; Fang, T.; Li, Y. Y.; Mi, Z. T. Chin. J. Explos. Propellants 2006, 4, 54.

    30. [30]

      [贺芳, 方涛, 李亚裕, 米镇涛. 火炸药学报, 2006, 4, 54.]

    31. [31]

      (24) Kaler, E.W.; Murthy, A. K.; Rodriguez, B. E.; Zasadzinski, J. A. Science 1989, 245, 1371.

    32. [32]

      (25) Shen, Y.W.; Hao, J. C.; Hoffmann, H. Soft Matter 2007, 3, 407.

    33. [33]

      (26) Lu, T.; Li, Z. H.; Huang, J. B.; Fu, H. L. Langmuir 2008, 24, 0723.

    34. [34]

      (27) Yin, H. Q.; Lin, Y. Y.; Huang, J. B. J. Collid Interface Sci. 2009, 38, 177.

    35. [35]

      (28) Gronwald, O.; Snip, E.; Shinkai, S. Curr. Opin. Colloid nterface Sci. 2002, 7, 148.

    36. [36]

      (29) Koshy, P.; Verma, G.; Aswal, V. K.; Venkatesh, M.; Hassan, P. A. J. Phys. Chem. B 2010, 114, 10462.

    37. [37]

      (30) Zhao, G. X.; Zhu, B. Y. Principles of Surfactant Action, 1st ed.; hina Light Industry Press: Beijing, 2003; pp 61-95, 25-320.

    38. [38]

      [赵国玺, 朱瑶. 表面活性剂作用原理. 北京: 中 轻工业出版社, 2003: 61-95, 225-320.]

    39. [39]

      (31) Ishi-I, T.; Shinkai, S. Supramolecular Dye Chemistry. In Topics n Current Chemistry;Wu?rthner, F. Eds.; Springer: Berlin, New ork, 2005; pp258, 119-160.

    40. [40]

      (32) Han, F.; He, X.; Huang, J. B.; Li, Z. C.;Wang, Y. L.; Fu, H. L. J. Phys. Chem. B 2004, 108, 5256.


  • 加载中
    1. [1]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    2. [2]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    3. [3]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    4. [4]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    5. [5]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    6. [6]

      Dong-Bing Cheng Junxin Duan Haiyu Gao . Experimental Teaching Design on Chitosan Extraction and Preparation of Antibacterial Gel. University Chemistry, 2024, 39(2): 330-339. doi: 10.3866/PKU.DXHX202308053

    7. [7]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    8. [8]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

    9. [9]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    10. [10]

      Haoxiang Zhang Zhihan Zhao Yongchen Jin Zhiqiang Niu Jinlei Tian . Synthesis of an Efficient Absorbent Gel: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(11): 251-258. doi: 10.12461/PKU.DXHX202401084

    11. [11]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    12. [12]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    13. [13]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    14. [14]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    15. [15]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    16. [16]

      Lijuan Liu Xionglei Wang . Preparation of Hydrogels from Waste Thermosetting Unsaturated Polyester Resin by Controllable Catalytic Degradation: A Comprehensive Chemical Experiment. University Chemistry, 2024, 39(11): 313-318. doi: 10.12461/PKU.DXHX202403060

    17. [17]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    18. [18]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    19. [19]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    20. [20]

      Yanhui Sun Junmin Nan Guozheng Ma Xiaoxi Zuo Guoliang Li Xiaoming Lin . Exploration and Teaching Practice of Ideological and Political Elements in Interface Physical Chemistry: Taking “Additional Pressure on Curved Surfaces” as an Teaching Example. University Chemistry, 2024, 39(11): 20-27. doi: 10.3866/PKU.DXHX202402023

Metrics
  • PDF Downloads(1471)
  • Abstract views(2945)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return