Citation: LAO Chun-Feng, CHU Zeng-Ze, ZOU De-Chun. Self-Assembly of 3-Aminopropyltrimethoxysilane to Improve the Efficiency of Dye-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinica, ;2011, 27(02): 419-424. doi: 10.3866/PKU.WHXB20110209 shu

Self-Assembly of 3-Aminopropyltrimethoxysilane to Improve the Efficiency of Dye-Sensitized Solar Cells

  • Received Date: 13 September 2010
    Available Online: 22 December 2010

    Fund Project: 国家自然科学基金(50125310, 90401028) (50125310, 90401028)国家重点基础研究发展规划项目(973) (2002CB613405)资助 (973) (2002CB613405)

  • A dye-sensitized solar cell (DSSC) based on a 3-aminopropyltrimethoxysilane (APTS)- modified TiO2 electrode was fabricated. This cell generated a short current of 18.32 mA·cm-2, an open voltage of 775.9 mV, and its overall photo-to-electricity conversion efficiency was 9.15% under 100 mW·cm-2 white light irradiation from a xenon lamp. The three DSSC parameters for the bare TiO2 electrode were found to be 18.08 mA·cm-2, 749.9 mV, and 7.70%. Compared with the unmodified solar cell, the overall conversion efficiency improved by 18.8% and the fill factor improved from 0.57 to 0.64. This improvement is attributed to the inhibition of the back reaction at the interface between the semiconductor and the electrolyte. The dark current-applied voltage curve shows that the onset voltage shifts from -0.30 to -0.40 V, which indicates a reduction in defects and surface states on the TiO2 surface because of the presence of APTS. Furthermore, special experiments were conducted to investigate the interaction among TiO2, APTS, and the cis-Ru(dcpyH2)2(SCN)2 dye. In these experiments, APTS and the dye were self- assembled onto a TiO2 electrode in layers. The interaction was characterized by X-ray photoelectron spectroscopy (XPS). Qualitative and quantitative results showed that the ―OCH2CH3 was partially removed and it formed mono-bridge or bi-bridge Si―O―Ti bonds. The cis-Ru(dcpyH2)2(SCN)2 dye adsorbed onto APTS through an electrostatic interaction between ―COOH and ―NH2 from the dye. FT-IR spectra further confirmed this inner interaction.

  • 加载中
    1. [1]

      (1) O′Regan, B.; Gr?tzel, M. Nature 1991, 353, 737.

    2. [2]

      (2) Nazeeruddin, M. K.; Rodicio, I.; Humphry-Baker, R.; Muller, E.; Liska, P.; Vlachopoulos, N.; Gr?tzel, M. J. Am. Chem. Soc. 1993, 115, 6382.

    3. [3]

      (3) Keis, K.; Bauer, C.; Boschloo, G.; Hagfeldt, A.;Westermark, K.; ensmo, H.; Siegbahn, H. J. Photochem. Photobio. A 2002, 148, 7.

    4. [4]

      (4) Stergiopoulos, T.; Arabatzis, I. M.; Cachet, H.; Falaras, P. J. Photochem. Photobio. A 2003, 155, 163.

    5. [5]

      (5) Fitzmaurice, D. J.; Frei, H. Langmuir 1991, 7, 1129.

    6. [6]

      (6) Hara, K.; Horiguchi, T.; Kinoshita, T.; Sayama, K.; Sugihara, H.; rakawa, H. Sol. Energy Mater. Sol. Cells 2000, 64, 115.

    7. [7]

      (7) Heimer, T. A.; D′Arcangelis, S. T.; Farzad, F.; Stipkala, J. M.; eyer, G. J. Inorg. Chem. 1996, 35, 5319.

    8. [8]

      (8) Nüesch, F.; Moser, J. E.; Shklover, V.; Grätzel, M. J. Am. Chem. Soc. 1996, 118, 5420

    9. [9]

      (9) Hagfeldt, A.; Gr?tzel, M. Chem. Rev. 1995, 95, 49.

    10. [10]

      (10) Peter, L. M.;Wijayantha, K. G. U. Electrochem. Commun. 1999, 1, 576.

    11. [11]

      (11) Rensmo, H.; Lindstrom, H.; Sodergren, S.;Willstedt, A. K.; olbrand, A.; Hagfeldt, A.; Lindquist, S. E. J. Electrochem. Soc. 1996, 143, 3173.

    12. [12]

      (12) Wang, Z. S.; Huang, C. H.; Huang, Y. Y.; Hou, Y. J.; Xie, P. H.; hang, B.W.; Cheng, H. M. Chem. Mater. 2001, 13, 678.

    13. [13]

      (13) Kay, A.; Gr?tzel, M. Chem. Mater. 2002, 14, 2930.

    14. [14]

      (14) Palomares, E.; Clifford, J. N.; Haque, S. A.; Lutz, T.; Durrant, J. R. J. Am. Chem. Soc. 2003, 125, 475.

    15. [15]

      (15) Zhang, L.; Ren, Y. J.; Cai, S. M. Electrochemistry 2002, 8, 27. 张莉, 任焱杰, 蔡生民. 电化学, 2002, 8, 27.]

    16. [16]

      (16) Yang, S. M.; Kou, H. Z.;Wang, L.;Wang, H. J.; Fu,W. H. Acta Phys. -Chim. Sin. 2009, 25, 1219.

    17. [17]

      [杨术明, 寇慧芝, 汪玲, 红军, 付文红. 物理化学学报, 2009, 25, 1219.]

    18. [18]

      (17) Decher, G. Science 1997, 277, 1232.

    19. [19]

      (18) Lee, C. H.; Lin, T. S.; Mou, C. Y. J. Phys. Chem. B 2003, 107, 543.

    20. [20]

      (19) Mukhopadhyay, K.; Phadtare, S.; Vinod, V. P.; Kumar, A.; Rao, .; Chaudhari, R. V.; Sastry, M. Langmuir 2003, 19, 3858.

    21. [21]

      (20) Kominami, H.; Itonaga, M.; Shinonaga, A.; Kagawa, S.; onishi, S.; Kera, Y. Stu. Sur. Sci. Cat. 2002, 143, 1089.

    22. [22]

      (21) Lao. C. F. Researches on the Efficiency of Dye-Sensitized Solar ells. Ph.D. Dissertation, Peking University, Beijing, 2006.

    23. [23]

      [劳 峰. 染料敏化太阳能电池效率问题的研究

    24. [24]

      [D]. 北京: 北京大 , 2006.]

    25. [25]

      (22) Zhang, J.; Yang, G. T.; Sun, Q.; Zheng J.;Wang, P. Q.; Zhu, Y. J.; Zhao, X. Z. J. Ren. Sust. Energy 2010, 013104.

    26. [26]

      (23) Lao, C. F.; Chuai, Y. T.; Su, L.; Liu, X.; Huang, L.; Cheng, H. M.; Zou, D. C. Sol. Energy Mater. Sol. Cells 2004, 85, 457.

    27. [27]

      (24) Rosenblut, M. L.; Lewis, N. S. J. Phys. Chem. 1989, 93, 3735.

    28. [28]

      (25) Kumer, A.; Santangelo, P. G.; Lewis, N. S. J. Phys. Chem. 1992, 6, 835.

    29. [29]

      (26) Moser, J.; Punchihewa, S.; Infelta, P. P.; Gr?tzel, M. Langmuir 1991, 7, 3012.

    30. [30]

      (27) Nazeruddin, M. K.; Humphry-Baker, R.; Liska, P.; Gr?tzel, M. J. Phys. Chem. B 2003, 107, 8981.

    31. [31]

      (28) Rensmo, H.;Westermark, K.; S?dergren, S.; Kohle, O.; Persson, P.; Lunell, S.; Siegbahn, H. J. Chem. Phys. 1999, 111, 2744.

    32. [32]

      (29) Westermark, K.; Rensmo, H.; Lees, A. C.; Vos, J. G.; Siegbahn, H. J. Phys. Chem. B 2002, 106, 10108.

    33. [33]

      (30) Chang, C. C.; Chen,W. C. J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 3419.

    34. [34]

      (31) Bertrand, P. T.; Jonas, A.; Laschewsky, A.; Legras, R. Macromol. Rapid. Commun. 2000, 21, 319.

    35. [35]

      (32) Kumar, A.; Mandale, A. B.; Sastry, M. Langmuir 2000, 16, 6921.

    36. [36]

      (33) Jarrais, B.; Silva, A. R.; Freire, C. Eur. J. Inorg. Chem. 2005, 582.

    37. [37]

      (34) Noh, J.; Ito, E.; Nakajima, K.; Kim, J.; Lee, H.; Hara, M. J. Phys. Chem. B 2002, 106, 7139.

    38. [38]

      (35) Lin, J.; Siddiqui, J. A.; Ottenbrite, R. M. Polym. Adv. Technol. 2001, 12, 285.

    39. [39]

      (36) Ara , A. C.; Johnson, L. R.; Bliznyuk, V. N.; Schlesinger, Z.; arter, S. A.; H?rhold, H. H. Adv. Mater. 2000, 12, 1689.


  • 加载中
    1. [1]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    2. [2]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    3. [3]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    4. [4]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    5. [5]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    6. [6]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    7. [7]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    8. [8]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    9. [9]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    10. [10]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    11. [11]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    12. [12]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    13. [13]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    14. [14]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    15. [15]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    16. [16]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    17. [17]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    18. [18]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    19. [19]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    20. [20]

      Hongwei Ma Hui Li . Three Methods for Structure Determination from Powder Diffraction Data. University Chemistry, 2024, 39(3): 94-102. doi: 10.3866/PKU.DXHX202310035

Metrics
  • PDF Downloads(1642)
  • Abstract views(3236)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return