Citation: WANG Chong-Tai, HUA Ying-Jie, SUN Zhen-Fan, WEI Ji-Chong, LI Tian-Lue, TONG Ye-Xiang, LIU Xiao-Yang. Electrochemical Properties of the Dawson-Type Heteropolytungstate Anion P2W18O626- and Its O2 Reduction Electrocatalysis[J]. Acta Physico-Chimica Sinica, ;2011, 27(02): 473-478. doi: 10.3866/PKU.WHXB20110208 shu

Electrochemical Properties of the Dawson-Type Heteropolytungstate Anion P2W18O626- and Its O2 Reduction Electrocatalysis

  • Received Date: 2 August 2010
    Available Online: 22 December 2010

    Fund Project: 国家自然科学基金(20963003) (20963003) 海南重点科技基金(080305, 090803) (080305, 090803) 海南省自然科学基金(509009) (509009)吉林省科技项目(20090595)资助 (20090595)

  • The electrochemical properties of the Dawson-type heteropolyanion P2W18O626- were studied in detail by cyclic voltammetry, alternating current (AC) voltammetry, and AC impedance. Cyclic voltammetry results revealed that P2W18O626- possessed two pairs of reversible one-electron redox waves and two pairs of reversible two-electron redox waves in a solution containing 0.1 mol·L-1 Na2SO4 and NaHSO4 (pH 2.52). The peak potential and the peak current of the single-electron wave were independent of the solution pH while the peak potential of the two-electron wave shifted negatively, and the peak current decreased with an increase in solution pH. This indicated that the two-electron electrode process involved H+ and the involved H+ number was 2. AC impedance spectroscopy showed that the P2W18O626- electrode process was fully controlled by diffusion and the diffusion coefficient (DO) was 2.5×10-6 cm2·s-1. The cyclic voltammograms indicated that significant P2W18O626- electrocatalysis towards O2 reduction to H2O2 occurred as evidenced by the third wave pair and a catalytic efficiency of 300% were obtained. Application of P2W18O626- in the degradation of nitrobenzene in the electro-Fenton-like system containing PW11O39Fe(III)(H2O)4- showed a remarkable improvement in terms of degradation efficiency.

  • 加载中
    1. [1]

      (1) Toth, J. E.; Anson, F. C. J. Am. Chem. Soc. 1989, 111, 2444.

    2. [2]

      (2) Sadakane, M.; Steckhan, E. Chem. Rev. 1998, 98, 219.

    3. [3]

      (3) Coronado, E.; ′mez-Garc?′a C. J. Chem. Rev. 1998, 98, 273.

    4. [4]

      (4) Inoue, M.; Suzuki, T.; Fujita, Y.; Oda, M.; Matsumoto, N.; amase, T. J. Inorgan. Biochem. 2006, 100, 1225.

    5. [5]

      (5) Xi, X. D.; Dong, S. J. J. Mole. Catal. A: Chem. 1996, 114, 257.

    6. [6]

      (6) Fay, N.; Dempsey, E.; McCormac, T. J. Electroanal. Chem. 2005, 574, 359.

    7. [7]

      (7) Lei, P. X.; Chen, C. C.; Yang, J.; Ma,W. H.; Zhao, J. C.; Zang, L. Environ. Sci. Technol. 2005, 39, 8466.

    8. [8]

      (8) Mylonas, A.; Hiskia, A.; Papaconstantinou, E. J. Mole. Catal. A: Chem. 1996, 114, 19l.

    9. [9]

      (9) Wang, C. T.; Hua, Y. J.; Li, G. R.; Tong, Y. X.; Li,Y. G. Acta him. Sin. 2008, 66, 835.

    10. [10]

      [王崇太, 华英杰, 李高仁, 童叶翔, 玉光. 化学学报, 2008, 66, 835.]

    11. [11]

      (10) Wang, C. T.; Hua, Y. J.; Li, G. R.; Tong, Y. X.; Li, Y. G. lectrochim. Acta, 2008, 53, 5100.

    12. [12]

      (11) Hua, Y. J.;Wang, C. T.; Tong, Y. X.; Zhang, D. S.; Zhang, Q.; u, T. A.; Hu, P. Acta Chim. Sin. 2009, 67, 2650.

    13. [13]

      [华英杰, 崇太, 童叶翔, 张大帅, 张奇, 谷铁安, 胡佩, 化学学报, 2009, 67, 2650.]

    14. [14]

      (12) Prenzler, P. D.; Boskovic, C.; Bond, A. M.; Anthony, G.W. Anal. Chem. 1999, 71, 3650.

    15. [15]

      (13) Shchukin, D. G.; Sviridov, D. V. Electrochem. Commun. 2002, 4, 02.

    16. [16]

      (14) Haraguchi, N.; Okaue, Y.; Isobe, T.; Matsuda, Y. Inorg. Chem. 1994, 33, 1015.

    17. [17]

      (15) Bard, A. J.; Faulkner, L. R. Electrochemical Methods- undamentals and Applications, 1st ed.; Chemical Industry ress: Beijing, 1986; p253; translated by Gu, L.Y.; Lü, M. X.; ong, S. Z.; Xu, C. C.

    18. [18]

      [Bard, A. J.; Faulkner, L. R. 电化学方 -原理及应用. 谷林锳, 吕鸣祥, 宋诗哲,许淳淳, 译; 北京: 学工业出版社, 1986: 253.]

    19. [19]

      (16) Wang, C. T.; Hua, Y. J.; Tong, Y. X. Electrochim. Acta 2010, 55, 755.


  • 加载中
    1. [1]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    2. [2]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    3. [3]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    4. [4]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    5. [5]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    6. [6]

      Xi Xu Chaokai Zhu Leiqing Cao Zhuozhao Wu Cao Guan . Experiential Education and 3D-Printed Alloys: Innovative Exploration and Student Development. University Chemistry, 2024, 39(2): 347-357. doi: 10.3866/PKU.DXHX202308039

    7. [7]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    8. [8]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    9. [9]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    10. [10]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    11. [11]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    12. [12]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    13. [13]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    14. [14]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    15. [15]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    16. [16]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    17. [17]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    18. [18]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    19. [19]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    20. [20]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

Metrics
  • PDF Downloads(1175)
  • Abstract views(2637)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return