Citation: SUN Gang-Wei, SONG Wen-Hua, LIU Xiao-Jun, QIAO Wen-Ming, LING Li-Cheng. Asymmetric Capacitance Behavior Based on the Relationship between Ion Dimension and Pore Size[J]. Acta Physico-Chimica Sinica, ;2011, 27(02): 449-454. doi: 10.3866/PKU.WHXB20110205 shu

Asymmetric Capacitance Behavior Based on the Relationship between Ion Dimension and Pore Size

  • Received Date: 15 October 2010
    Available Online: 21 December 2010

    Fund Project: 国家自然科学基金重点项目(50730003)资助 (50730003)

  • We reported on the capacitive behaviors regarding to the relationship between ion size and pore architecture, using activated carbons with an adjusted pore structure as electrode materials. The results revealed that an asymmetric capacitance response occurred in both electrodes. The gravimetric capacitances for the positive and negative electrodes were 113 and 7 F·g-1, respectively. A significant current decay was presented in the negative region of cyclic voltammetry curve. Experimental and calculated maximum storage charges had a od agreement. This results suggested that the insufficiently developed pore architecture for cation accommodation led to a saturation effect on the active surface, consequently, a deteriorated capacitive performance in the negative electrode. Contrarily, when pore size was larger than tetrafluoroborate dimension, the saturation effect was not found. However, this was at the expense of the lower specific area capacitance in the positive electrode. The poor capacitive behavior of the negative electrode would limit the usable voltage of the cell system and consequently the deliverable energy and power. As a result, an optimal match between the pores size and the ion dimension with respect to each electrode would be considered to obtain the maximum capacitance for the capacitor unit.

  • 加载中
    1. [1]

      (1) Winter, M.; Brodd, R. J. Chem. Rev. 2004, 104, 4245.

    2. [2]

      (2) Chen, H. S.; Cong, T. N.; Yang,W.; Tan, C. Q.; Li, Y. L.; Ding, Y. L. Prog. Nat. Sci. 2009, 19, 291.

    3. [3]

      (3) Wang, D.W.; Li, F.; Liu, M.; Lu, G. Q.; Cheng, H. M. Angew. Chem. Int. Edit. 2008, 47, 373.

    4. [4]

      (4) Frackowia, E. Phys. Chem. Chem. Phys. 2007, 9, 1774.

    5. [5]

      (5) Pandolfo, A. G.; Hollenkamp, A. F. J. Power Sources 2006, 157, 1.

    6. [6]

      (6) Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. J. Am. Chem. Soc. 2008, 130, 5390.

    7. [7]

      (7) Korenblit, Y.; Rose, M.; Kockrick, E.; Borchardt, L.; Kvit, A.; askel, S.; Yushin, G. ACS Nano 2010, 4, 1337.

    8. [8]

      (8) Janes, A.; Lust, E. J. Electrochem. Soc. 2006, 153, A113.

    9. [9]

      (9) Largeot, C.; Portet, C.; Chmiola, J.; Taberna, P. L.; tsi, Y.; imon, P. J. Am. Chem. Soc. 2008, 130, 2730.

    10. [10]

      (10) Chmiola, J.; Largeot, C.; Taberna, P. L.; Simon, P.; tsi, Y. Angew. Chem. Int. Edit. 2008, 47, 3392.

    11. [11]

      (11) Lin, R.; Taberna, P. L.; Chmiola, J.; Guay, D.; tsi, Y.; Simon, P. J. Electrochem. Soc. 2009, 156, A7.

    12. [12]

      (12) tsi, Y.; Nikitin, A.; Ye, H.; Zhou,W.; Fischer, J. E.; Yi, B.; oley, H. C.; Barsoum, M.W. Nat. Mater. 2003, 2, 591.

    13. [13]

      (13) Shanina, B. D.; Konchits, A. A.; Kolesnik, S. P.; Veynger, A. I.; anishevskii, A. M.; Popov, V. V.; rdeev, S. K. Carbon 2003, 1, 3027.

    14. [14]

      (14) Permann, L.; Latt, M.; Leis, J.; Arulepp, M. Electrochim. Acta 2006, 51, 1274.

    15. [15]

      (15) Dash, R.; Chmiola, J.; Yushin, G.; tsi, Y.; Laudisio, G.; Singer, J.; Fischer, J.; Kucheyev, S. Carbon 2006, 44, 2489.

    16. [16]

      (16) Fernandez, J. A.; Arulepp, M.; Leis, J.; Stoeckli, F.; Centeno, T. A. Electrochim. Acta 2008, 53, 7111.

    17. [17]

      (17) Latt, M.; Kaarik, M.; Permann, L.; Kuura, H.; Arulepp, M.; eis, J. J. Solid State Electrochem. 2010, 14, 543.

    18. [18]

      (18) Ravikovitch, P. I.; Neimark, A. V. Langmuir 2006, 22, 11171.

    19. [19]

      (19) King, K. S.W.; Everett, D. H. Pure Appl. Chem. 1985, 57, 603.

    20. [20]

      (20) Ravikovitch, P. L.; Neimark, A. V. Colloids Surf. A 2001, 87-188, 11.

    21. [21]

      (21) Hulicova-Jurcakova, D.; Seredych, M.; Lu, G. Q.; Bandosz, T. J. Adv. Funct. Mater. 2008, 18, 1.

    22. [22]

      (22) Brunauer, B.; Deming, L. S.; Deming,W. E.; Teller, E. J. Am. Chem. Soc. 1940, 62, 1723.

    23. [23]

      (23) Ue, M. J. Electrochem. Soc. 1994, 141, 3336.

    24. [24]

      (24) Pell,W. G.; Conway, B. E.; Marincic, N. J. Electroanal. Chem. 2000, 491, 9.

    25. [25]

      (25) Zheng, P. L.; Jow, T. R. J. Electrochem. Soc. 1997, 144, 2417.

    26. [26]

      (26) Mysyk, R.; Raymundo-Pinero, E.; Pernak, J.; Beguin, F. J. Phys. Chem. C 2009, 113, 13443.

    27. [27]

      (27) Ania, C. O.; Pernak, J.; Stefaniak, F.; Raymundo-Pinero, E.; eguin, F. Carbon 2009, 47, 3158.


  • 加载中
    1. [1]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    2. [2]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    3. [3]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    4. [4]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    5. [5]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    8. [8]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    9. [9]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    10. [10]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    11. [11]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    12. [12]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    13. [13]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    14. [14]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    15. [15]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    16. [16]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    17. [17]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    18. [18]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    19. [19]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    20. [20]

      Fuxian Wan Ying Li Yuanhong Zhang Shuhua Zhu Jing Xu Yanfang Wang Lili Zhang . Exploration and Practice of Teaching in Agricultural Characteristic Organic Chemistry Course. University Chemistry, 2024, 39(2): 298-306. doi: 10.3866/PKU.DXHX202308041

Metrics
  • PDF Downloads(1367)
  • Abstract views(2391)
  • HTML views(22)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return