Citation: LIU Bo, HUANG Shi-Ping, ZHU Ji-Qin, WANG Peng, TIAN Hui-Ping. Effect of Temperature on the Structural and Thermodynamic Properties of Aqueous Dimethyl Sulfoxide[J]. Acta Physico-Chimica Sinica, ;2011, 27(02): 289-294. doi: 10.3866/PKU.WHXB20110203 shu

Effect of Temperature on the Structural and Thermodynamic Properties of Aqueous Dimethyl Sulfoxide

  • Received Date: 21 July 2010
    Available Online: 17 December 2010

    Fund Project: 国家自然科学基金(20876005, 21076007) (20876005, 21076007)国家重点基础研究发展规划项目(973) (2010CB732301)资助 (973) (2010CB732301)

  • The structural and thermodynamic properties of aqueous dimethyl sulfoxide (DMSO) at a mole fraction of 0.002 were investigated using referenced interaction site model theory at different temperatures. The results reveal that the water network structure is enhanced by the presence of DMSO. The increased fluctuation in the potential of mean force suggests that the water-induced force is repulsive. In addition, the increased entropy of solvation and free energy of solvation imply that the randomness of the solution increases with an increase in temperature. The increased interaction energy and excess chemical potential reveal that the solution deviates from an ideal solution. Furthermore, the increased cavity reorganization energy shows that the system structure reorganizes easily at high temperature.

  • 加载中
    1. [1]

      (1) Martin, D.; Hauthal, H. G. Dimethyl Sulfoxide;Wiley: 1975 New York.

    2. [2]

      (2) Jacobs, S.W.; Rosenbaum, E. E.;Wood, D. C. Dimethyl Sulfoxide; Marcel Dekker: New York, 1971.

    3. [3]

      (3) Luzar, A.; Chandler, D. J. Chem. Phys. 1993, 98, 8160.

    4. [4]

      (4) Soper, A. K.; Luzar, A. J. Chem. Phys. 1992, 97, 1320.

    5. [5]

      (5) Luzar, A.; Soper, A. K.; Chandler, D. J. Chem. Phys. 1993, 99, 836.

    6. [6]

      (6) Soper, A. K.; Luzar, A. J. Chem. Phys. 1996, 100, 1357.

    7. [7]

      (7) Cabral, J. T.; Luzar, A.; Teixeira, J.; Bellissent-Funel, M. C. J. Chem. Phys. 2000, 113, 8736.

    8. [8]

      (8) Madi sky,W. M.;Warfield, R.W. J. Chem. Phys. 1983, 78, 912.

    9. [9]

      (9) Fuchs, R.; Cray, G. E. M.; Bloomfield, J. J. J. Am. Chem. Soc. 1961, 83, 4281.

    10. [10]

      (10) Ludwig, R.; Farrar, T. C.; Zeidler, M. D. J. Phys. Chem. 1994, 8, 6684.

    11. [11]

      (11) Shashkov, S. N.; Kiselev, M. A.; Tioutiounnikov, S.N.; Kiselev, A. M.; Lesieur, P. Physica B 1999, 271, 184.

    12. [12]

      (12) Chalaris, M.; Samios, J. J. Mol. Liq. 2002, 98-99, 399.

    13. [13]

      (13) Kirchner, B.; Hutter, J. J. Chem. Phys. Lett. 2002, 364, 497.

    14. [14]

      (14) Rao, B. G.; Singh, U. C. J. Am. Chem. Soc. 1990, 112, 3803.

    15. [15]

      (15) Vaisman, I. I.; Berkowitz, M. L. J. Am. Chem. Soc. 1992, 114, 889.

    16. [16]

      (16) Borin, I. A.; Skaf, M. S. J. Chem. Phys. 1999, 110, 6412.

    17. [17]

      (17) Vishnayakov, A.; Lyubartsev, A. P.; Laaksonen, A. J. Phys. Chem. A 2001, 105, 1702.

    18. [18]

      (18) Mancera, R. L.; Chalaris, M. ; Refson, K.; Samios, J. Phys. Chem. Chem. Phys. 2004, 6, 94.

    19. [19]

      (19) Mancera, R. L.; Chalaris, M.; Samios, J. J. Mol. Liq. 2004, 110, 47.

    20. [20]

      (20) Zhang, Q.; Zhang, X.; Zhao, D. X. J. Mol. Liq. 2009, 145, 67.

    21. [21]

      (21) Li, Y. G.; Lu, J. F. Electrolyte Solution Theory; Tsinghua niversity Press: Beijing, 2005.

    22. [22]

      [李以圭, 陆九芳. 电解质溶液 论. 北京: 清华大学出版社, 2005.]

    23. [23]

      (22) Mitsutake, A.; Kinoshita, M.; Okamoto, Y.; Hirata, F. Chem. Phys. Lett. 2000, 329, 295.

    24. [24]

      (23) Yoshida, K.; Yamaguchi, T.; Kovalenko, A.; Hirata, F. J. Phys. Chem. B 2002, 106, 5042.

    25. [25]

      (24) Sato, H.; Hirata, F. J. Phys. Chem. A 2002, 106, 2300.

    26. [26]

      (25) Imai, T.; Kovalenko, A.; Hirata, F. Chem. Phys. Lett. 2004, 395, .

    27. [27]

      (26) Minezawa, N.; Kato, A. J. Phys. Chem. A 2005, 109, 5445.

    28. [28]

      (27) Freedman, H.; Le, L.; Tuszynski, J. A.; Truong, T. N. J. Phys. Chem. B 2008, 112, 2340.

    29. [29]

      (28) Hayaki, S.; Sato, H.; Sakaki, S. J. Mol. Liq. 2009, 147, 9.

    30. [30]

      (29) Vchirawongkwin, V.; Sato, H.; Sakaki, S. J. Phys. Chem. B 2010, 114, 10513.

    31. [31]

      (30) Chandler, D.; Andersen, H. C. J. Chem. Phys. 1972, 57, 1930.

    32. [32]

      (31) Chandler, D. J. Chem. Phys. 1973, 59, 2749.

    33. [33]

      (32) Hirata, F.; Pettit, M.; Rossky, P. J. J. Chem. Phys. 1982, 77, 509.

    34. [34]

      (33) Hirata, F. Bull. Chem. Soc. Jpn. 1998, 71, 1483.

    35. [35]

      (34) Perkyns, J. S.; Pettitt, B. M. J. Chem. Phys. 1992, 97, 7656.

    36. [36]

      (35) Kovalenko, A.; Hirata, F. J. Chem. Phys. 1999, 110, 10095.

    37. [37]

      (36) Kovalenko, A.; Hirata, F. Chem. Phys. Lett. 2001, 349, 496.

    38. [38]

      (37) Tanaka, H.;Walsh, J.; Gubbins, K. E. Mol. Phys. 1992, 76, 1221.

    39. [39]

      (38) Chandler, D.; McCoy, J. D.; Singer, S. J. J. Chem. Phys. 1986, 8, 5971.

    40. [40]

      (39) Chandler, D.; McCoy, J. D.; Singer, S. J. J. Chem. Phys. 1986, 8, 5977.

    41. [41]

      (40) Zhou, S. Q.; Zhang, X. P. Phys. Rev. E 2001, 64, 011112.

    42. [42]

      (41) Zhou, S. Q. Chem. Phys. 2005, 310, 129.

    43. [43]

      (42) Zhou, S. Q. J. Colloid Interface Sci. 2006, 298, 31.

    44. [44]

      (43) Zhou, S. Q. Phys. Rev. E 2006, 74, 011402.

    45. [45]

      (44) Yu, H. A.; Roux, B.; Karplus, M. J. Chem. Phys. 1990, 92, 5020.

    46. [46]

      (45) Geerke, D. P.; Oostenbrink, C.; van der Vegt, N. F. A.; van unsteren,W. F. J. Phys.Chem. B 2004, 108, 1436.

    47. [47]

      (46) Berendsen, J. C.; Crigera, J. R. Straatsma, T. P. J. Phys. Chem. 1987, 91, 6269.

    48. [48]

      (47) Rossky, P. J. Annu. Rev. Phys. Chem. 1985, 36, 321.

    49. [49]

      (48) Lar , J.; Solana, J. R. Fluid Phase Equilib. 2002, 193, 277.

    50. [50]

      (49) Zhou, S. Q. Chem. Phys. Lett. 2004, 399, 315.

    51. [51]

      (50) Zhou, S. Q. Chem. Phys. Lett. 2004, 399, 323.

    52. [52]

      (51) Zhou, S. Q. Chem. Phys. Lett., 2004, 392, 110.

    53. [53]

      (52) Zhou, S. Q. Chin. J. Chem. Phys. 2005, 18, 679.

    54. [54]

      [周世琦. 化学 理学报, 2005, 18, 679.]


  • 加载中
    1. [1]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    2. [2]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    3. [3]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    4. [4]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    5. [5]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    6. [6]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    7. [7]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    8. [8]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    9. [9]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    10. [10]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    11. [11]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    12. [12]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    13. [13]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    14. [14]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    15. [15]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    16. [16]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    17. [17]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    18. [18]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    19. [19]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    20. [20]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

Metrics
  • PDF Downloads(1385)
  • Abstract views(2696)
  • HTML views(36)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return