Citation: LIU Bo, HUANG Shi-Ping, ZHU Ji-Qin, WANG Peng, TIAN Hui-Ping. Effect of Temperature on the Structural and Thermodynamic Properties of Aqueous Dimethyl Sulfoxide[J]. Acta Physico-Chimica Sinica, ;2011, 27(02): 289-294. doi: 10.3866/PKU.WHXB20110203 shu

Effect of Temperature on the Structural and Thermodynamic Properties of Aqueous Dimethyl Sulfoxide

  • Received Date: 21 July 2010
    Available Online: 17 December 2010

    Fund Project: 国家自然科学基金(20876005, 21076007) (20876005, 21076007)国家重点基础研究发展规划项目(973) (2010CB732301)资助 (973) (2010CB732301)

  • The structural and thermodynamic properties of aqueous dimethyl sulfoxide (DMSO) at a mole fraction of 0.002 were investigated using referenced interaction site model theory at different temperatures. The results reveal that the water network structure is enhanced by the presence of DMSO. The increased fluctuation in the potential of mean force suggests that the water-induced force is repulsive. In addition, the increased entropy of solvation and free energy of solvation imply that the randomness of the solution increases with an increase in temperature. The increased interaction energy and excess chemical potential reveal that the solution deviates from an ideal solution. Furthermore, the increased cavity reorganization energy shows that the system structure reorganizes easily at high temperature.

  • 加载中
    1. [1]

      (1) Martin, D.; Hauthal, H. G. Dimethyl Sulfoxide;Wiley: 1975 New York.

    2. [2]

      (2) Jacobs, S.W.; Rosenbaum, E. E.;Wood, D. C. Dimethyl Sulfoxide; Marcel Dekker: New York, 1971.

    3. [3]

      (3) Luzar, A.; Chandler, D. J. Chem. Phys. 1993, 98, 8160.

    4. [4]

      (4) Soper, A. K.; Luzar, A. J. Chem. Phys. 1992, 97, 1320.

    5. [5]

      (5) Luzar, A.; Soper, A. K.; Chandler, D. J. Chem. Phys. 1993, 99, 836.

    6. [6]

      (6) Soper, A. K.; Luzar, A. J. Chem. Phys. 1996, 100, 1357.

    7. [7]

      (7) Cabral, J. T.; Luzar, A.; Teixeira, J.; Bellissent-Funel, M. C. J. Chem. Phys. 2000, 113, 8736.

    8. [8]

      (8) Madi sky,W. M.;Warfield, R.W. J. Chem. Phys. 1983, 78, 912.

    9. [9]

      (9) Fuchs, R.; Cray, G. E. M.; Bloomfield, J. J. J. Am. Chem. Soc. 1961, 83, 4281.

    10. [10]

      (10) Ludwig, R.; Farrar, T. C.; Zeidler, M. D. J. Phys. Chem. 1994, 8, 6684.

    11. [11]

      (11) Shashkov, S. N.; Kiselev, M. A.; Tioutiounnikov, S.N.; Kiselev, A. M.; Lesieur, P. Physica B 1999, 271, 184.

    12. [12]

      (12) Chalaris, M.; Samios, J. J. Mol. Liq. 2002, 98-99, 399.

    13. [13]

      (13) Kirchner, B.; Hutter, J. J. Chem. Phys. Lett. 2002, 364, 497.

    14. [14]

      (14) Rao, B. G.; Singh, U. C. J. Am. Chem. Soc. 1990, 112, 3803.

    15. [15]

      (15) Vaisman, I. I.; Berkowitz, M. L. J. Am. Chem. Soc. 1992, 114, 889.

    16. [16]

      (16) Borin, I. A.; Skaf, M. S. J. Chem. Phys. 1999, 110, 6412.

    17. [17]

      (17) Vishnayakov, A.; Lyubartsev, A. P.; Laaksonen, A. J. Phys. Chem. A 2001, 105, 1702.

    18. [18]

      (18) Mancera, R. L.; Chalaris, M. ; Refson, K.; Samios, J. Phys. Chem. Chem. Phys. 2004, 6, 94.

    19. [19]

      (19) Mancera, R. L.; Chalaris, M.; Samios, J. J. Mol. Liq. 2004, 110, 47.

    20. [20]

      (20) Zhang, Q.; Zhang, X.; Zhao, D. X. J. Mol. Liq. 2009, 145, 67.

    21. [21]

      (21) Li, Y. G.; Lu, J. F. Electrolyte Solution Theory; Tsinghua niversity Press: Beijing, 2005.

    22. [22]

      [李以圭, 陆九芳. 电解质溶液 论. 北京: 清华大学出版社, 2005.]

    23. [23]

      (22) Mitsutake, A.; Kinoshita, M.; Okamoto, Y.; Hirata, F. Chem. Phys. Lett. 2000, 329, 295.

    24. [24]

      (23) Yoshida, K.; Yamaguchi, T.; Kovalenko, A.; Hirata, F. J. Phys. Chem. B 2002, 106, 5042.

    25. [25]

      (24) Sato, H.; Hirata, F. J. Phys. Chem. A 2002, 106, 2300.

    26. [26]

      (25) Imai, T.; Kovalenko, A.; Hirata, F. Chem. Phys. Lett. 2004, 395, .

    27. [27]

      (26) Minezawa, N.; Kato, A. J. Phys. Chem. A 2005, 109, 5445.

    28. [28]

      (27) Freedman, H.; Le, L.; Tuszynski, J. A.; Truong, T. N. J. Phys. Chem. B 2008, 112, 2340.

    29. [29]

      (28) Hayaki, S.; Sato, H.; Sakaki, S. J. Mol. Liq. 2009, 147, 9.

    30. [30]

      (29) Vchirawongkwin, V.; Sato, H.; Sakaki, S. J. Phys. Chem. B 2010, 114, 10513.

    31. [31]

      (30) Chandler, D.; Andersen, H. C. J. Chem. Phys. 1972, 57, 1930.

    32. [32]

      (31) Chandler, D. J. Chem. Phys. 1973, 59, 2749.

    33. [33]

      (32) Hirata, F.; Pettit, M.; Rossky, P. J. J. Chem. Phys. 1982, 77, 509.

    34. [34]

      (33) Hirata, F. Bull. Chem. Soc. Jpn. 1998, 71, 1483.

    35. [35]

      (34) Perkyns, J. S.; Pettitt, B. M. J. Chem. Phys. 1992, 97, 7656.

    36. [36]

      (35) Kovalenko, A.; Hirata, F. J. Chem. Phys. 1999, 110, 10095.

    37. [37]

      (36) Kovalenko, A.; Hirata, F. Chem. Phys. Lett. 2001, 349, 496.

    38. [38]

      (37) Tanaka, H.;Walsh, J.; Gubbins, K. E. Mol. Phys. 1992, 76, 1221.

    39. [39]

      (38) Chandler, D.; McCoy, J. D.; Singer, S. J. J. Chem. Phys. 1986, 8, 5971.

    40. [40]

      (39) Chandler, D.; McCoy, J. D.; Singer, S. J. J. Chem. Phys. 1986, 8, 5977.

    41. [41]

      (40) Zhou, S. Q.; Zhang, X. P. Phys. Rev. E 2001, 64, 011112.

    42. [42]

      (41) Zhou, S. Q. Chem. Phys. 2005, 310, 129.

    43. [43]

      (42) Zhou, S. Q. J. Colloid Interface Sci. 2006, 298, 31.

    44. [44]

      (43) Zhou, S. Q. Phys. Rev. E 2006, 74, 011402.

    45. [45]

      (44) Yu, H. A.; Roux, B.; Karplus, M. J. Chem. Phys. 1990, 92, 5020.

    46. [46]

      (45) Geerke, D. P.; Oostenbrink, C.; van der Vegt, N. F. A.; van unsteren,W. F. J. Phys.Chem. B 2004, 108, 1436.

    47. [47]

      (46) Berendsen, J. C.; Crigera, J. R. Straatsma, T. P. J. Phys. Chem. 1987, 91, 6269.

    48. [48]

      (47) Rossky, P. J. Annu. Rev. Phys. Chem. 1985, 36, 321.

    49. [49]

      (48) Lar , J.; Solana, J. R. Fluid Phase Equilib. 2002, 193, 277.

    50. [50]

      (49) Zhou, S. Q. Chem. Phys. Lett. 2004, 399, 315.

    51. [51]

      (50) Zhou, S. Q. Chem. Phys. Lett. 2004, 399, 323.

    52. [52]

      (51) Zhou, S. Q. Chem. Phys. Lett., 2004, 392, 110.

    53. [53]

      (52) Zhou, S. Q. Chin. J. Chem. Phys. 2005, 18, 679.

    54. [54]

      [周世琦. 化学 理学报, 2005, 18, 679.]


  • 加载中
    1. [1]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    2. [2]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    3. [3]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    4. [4]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    5. [5]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    6. [6]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    7. [7]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    8. [8]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    9. [9]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    10. [10]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    11. [11]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    14. [14]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    15. [15]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    16. [16]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    17. [17]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    18. [18]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    19. [19]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    20. [20]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

Metrics
  • PDF Downloads(1385)
  • Abstract views(2811)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return