Citation: LIU Bo, HUANG Shi-Ping, ZHU Ji-Qin, WANG Peng, TIAN Hui-Ping. Effect of Temperature on the Structural and Thermodynamic Properties of Aqueous Dimethyl Sulfoxide[J]. Acta Physico-Chimica Sinica, ;2011, 27(02): 289-294. doi: 10.3866/PKU.WHXB20110203 shu

Effect of Temperature on the Structural and Thermodynamic Properties of Aqueous Dimethyl Sulfoxide

  • Received Date: 21 July 2010
    Available Online: 17 December 2010

    Fund Project: 国家自然科学基金(20876005, 21076007) (20876005, 21076007)国家重点基础研究发展规划项目(973) (2010CB732301)资助 (973) (2010CB732301)

  • The structural and thermodynamic properties of aqueous dimethyl sulfoxide (DMSO) at a mole fraction of 0.002 were investigated using referenced interaction site model theory at different temperatures. The results reveal that the water network structure is enhanced by the presence of DMSO. The increased fluctuation in the potential of mean force suggests that the water-induced force is repulsive. In addition, the increased entropy of solvation and free energy of solvation imply that the randomness of the solution increases with an increase in temperature. The increased interaction energy and excess chemical potential reveal that the solution deviates from an ideal solution. Furthermore, the increased cavity reorganization energy shows that the system structure reorganizes easily at high temperature.

  • 加载中
    1. [1]

      (1) Martin, D.; Hauthal, H. G. Dimethyl Sulfoxide;Wiley: 1975 New York.

    2. [2]

      (2) Jacobs, S.W.; Rosenbaum, E. E.;Wood, D. C. Dimethyl Sulfoxide; Marcel Dekker: New York, 1971.

    3. [3]

      (3) Luzar, A.; Chandler, D. J. Chem. Phys. 1993, 98, 8160.

    4. [4]

      (4) Soper, A. K.; Luzar, A. J. Chem. Phys. 1992, 97, 1320.

    5. [5]

      (5) Luzar, A.; Soper, A. K.; Chandler, D. J. Chem. Phys. 1993, 99, 836.

    6. [6]

      (6) Soper, A. K.; Luzar, A. J. Chem. Phys. 1996, 100, 1357.

    7. [7]

      (7) Cabral, J. T.; Luzar, A.; Teixeira, J.; Bellissent-Funel, M. C. J. Chem. Phys. 2000, 113, 8736.

    8. [8]

      (8) Madi sky,W. M.;Warfield, R.W. J. Chem. Phys. 1983, 78, 912.

    9. [9]

      (9) Fuchs, R.; Cray, G. E. M.; Bloomfield, J. J. J. Am. Chem. Soc. 1961, 83, 4281.

    10. [10]

      (10) Ludwig, R.; Farrar, T. C.; Zeidler, M. D. J. Phys. Chem. 1994, 8, 6684.

    11. [11]

      (11) Shashkov, S. N.; Kiselev, M. A.; Tioutiounnikov, S.N.; Kiselev, A. M.; Lesieur, P. Physica B 1999, 271, 184.

    12. [12]

      (12) Chalaris, M.; Samios, J. J. Mol. Liq. 2002, 98-99, 399.

    13. [13]

      (13) Kirchner, B.; Hutter, J. J. Chem. Phys. Lett. 2002, 364, 497.

    14. [14]

      (14) Rao, B. G.; Singh, U. C. J. Am. Chem. Soc. 1990, 112, 3803.

    15. [15]

      (15) Vaisman, I. I.; Berkowitz, M. L. J. Am. Chem. Soc. 1992, 114, 889.

    16. [16]

      (16) Borin, I. A.; Skaf, M. S. J. Chem. Phys. 1999, 110, 6412.

    17. [17]

      (17) Vishnayakov, A.; Lyubartsev, A. P.; Laaksonen, A. J. Phys. Chem. A 2001, 105, 1702.

    18. [18]

      (18) Mancera, R. L.; Chalaris, M. ; Refson, K.; Samios, J. Phys. Chem. Chem. Phys. 2004, 6, 94.

    19. [19]

      (19) Mancera, R. L.; Chalaris, M.; Samios, J. J. Mol. Liq. 2004, 110, 47.

    20. [20]

      (20) Zhang, Q.; Zhang, X.; Zhao, D. X. J. Mol. Liq. 2009, 145, 67.

    21. [21]

      (21) Li, Y. G.; Lu, J. F. Electrolyte Solution Theory; Tsinghua niversity Press: Beijing, 2005.

    22. [22]

      [李以圭, 陆九芳. 电解质溶液 论. 北京: 清华大学出版社, 2005.]

    23. [23]

      (22) Mitsutake, A.; Kinoshita, M.; Okamoto, Y.; Hirata, F. Chem. Phys. Lett. 2000, 329, 295.

    24. [24]

      (23) Yoshida, K.; Yamaguchi, T.; Kovalenko, A.; Hirata, F. J. Phys. Chem. B 2002, 106, 5042.

    25. [25]

      (24) Sato, H.; Hirata, F. J. Phys. Chem. A 2002, 106, 2300.

    26. [26]

      (25) Imai, T.; Kovalenko, A.; Hirata, F. Chem. Phys. Lett. 2004, 395, .

    27. [27]

      (26) Minezawa, N.; Kato, A. J. Phys. Chem. A 2005, 109, 5445.

    28. [28]

      (27) Freedman, H.; Le, L.; Tuszynski, J. A.; Truong, T. N. J. Phys. Chem. B 2008, 112, 2340.

    29. [29]

      (28) Hayaki, S.; Sato, H.; Sakaki, S. J. Mol. Liq. 2009, 147, 9.

    30. [30]

      (29) Vchirawongkwin, V.; Sato, H.; Sakaki, S. J. Phys. Chem. B 2010, 114, 10513.

    31. [31]

      (30) Chandler, D.; Andersen, H. C. J. Chem. Phys. 1972, 57, 1930.

    32. [32]

      (31) Chandler, D. J. Chem. Phys. 1973, 59, 2749.

    33. [33]

      (32) Hirata, F.; Pettit, M.; Rossky, P. J. J. Chem. Phys. 1982, 77, 509.

    34. [34]

      (33) Hirata, F. Bull. Chem. Soc. Jpn. 1998, 71, 1483.

    35. [35]

      (34) Perkyns, J. S.; Pettitt, B. M. J. Chem. Phys. 1992, 97, 7656.

    36. [36]

      (35) Kovalenko, A.; Hirata, F. J. Chem. Phys. 1999, 110, 10095.

    37. [37]

      (36) Kovalenko, A.; Hirata, F. Chem. Phys. Lett. 2001, 349, 496.

    38. [38]

      (37) Tanaka, H.;Walsh, J.; Gubbins, K. E. Mol. Phys. 1992, 76, 1221.

    39. [39]

      (38) Chandler, D.; McCoy, J. D.; Singer, S. J. J. Chem. Phys. 1986, 8, 5971.

    40. [40]

      (39) Chandler, D.; McCoy, J. D.; Singer, S. J. J. Chem. Phys. 1986, 8, 5977.

    41. [41]

      (40) Zhou, S. Q.; Zhang, X. P. Phys. Rev. E 2001, 64, 011112.

    42. [42]

      (41) Zhou, S. Q. Chem. Phys. 2005, 310, 129.

    43. [43]

      (42) Zhou, S. Q. J. Colloid Interface Sci. 2006, 298, 31.

    44. [44]

      (43) Zhou, S. Q. Phys. Rev. E 2006, 74, 011402.

    45. [45]

      (44) Yu, H. A.; Roux, B.; Karplus, M. J. Chem. Phys. 1990, 92, 5020.

    46. [46]

      (45) Geerke, D. P.; Oostenbrink, C.; van der Vegt, N. F. A.; van unsteren,W. F. J. Phys.Chem. B 2004, 108, 1436.

    47. [47]

      (46) Berendsen, J. C.; Crigera, J. R. Straatsma, T. P. J. Phys. Chem. 1987, 91, 6269.

    48. [48]

      (47) Rossky, P. J. Annu. Rev. Phys. Chem. 1985, 36, 321.

    49. [49]

      (48) Lar , J.; Solana, J. R. Fluid Phase Equilib. 2002, 193, 277.

    50. [50]

      (49) Zhou, S. Q. Chem. Phys. Lett. 2004, 399, 315.

    51. [51]

      (50) Zhou, S. Q. Chem. Phys. Lett. 2004, 399, 323.

    52. [52]

      (51) Zhou, S. Q. Chem. Phys. Lett., 2004, 392, 110.

    53. [53]

      (52) Zhou, S. Q. Chin. J. Chem. Phys. 2005, 18, 679.

    54. [54]

      [周世琦. 化学 理学报, 2005, 18, 679.]


  • 加载中
    1. [1]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    2. [2]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    3. [3]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    4. [4]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    5. [5]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    6. [6]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    7. [7]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    8. [8]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    9. [9]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . 软模板法诱导Cu/Al2O3深孔道结构促进等离子催化CO2加氢制二甲醚. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    10. [10]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    11. [11]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    12. [12]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    13. [13]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    14. [14]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    15. [15]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    16. [16]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    17. [17]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    18. [18]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    19. [19]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    20. [20]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

Metrics
  • PDF Downloads(1385)
  • Abstract views(2764)
  • HTML views(43)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return