Citation: CUI Feng-Chao, YU Hong-Bo, WANG Qin, YE Wan-Li, LIU Jing-Yao. Mechanism and Kinetics of the CH3OCF2CF2OCH3+Cl Reaction[J]. Acta Physico-Chimica Sinica, ;2011, 27(02): 337-342. doi: 10.3866/PKU.WHXB20110201 shu

Mechanism and Kinetics of the CH3OCF2CF2OCH3+Cl Reaction

  • Received Date: 27 September 2010
    Available Online: 15 December 2010

    Fund Project: 国家自然科学基金(20333050, 20303007, 20973077) (20333050, 20303007, 20973077)教育部新世纪优秀人才支持计划(NCET)资助项目 (NCET)

  • A direct density functional theory dynamics method was used to determine the mechanism and kinetics of the CH3OCF2CF2OCH3+Cl reaction. Potential energy surface information was obtained at the BB1K/6-31+G(d,p) level. The hydrogen abstraction channels and displacement processes of the two stable conformers (SC1 and SC2) of CH3OCF2CF2OCH3 were taken into consideration. Theoretical rate constants of the individual H-abstraction channels (one from SC1 and two from SC2) were calculated by improved canonical variational transition state theory (ICVT) with a small-curvature tunneling (SCT) correction. The overall rate constant (kT) was obtained by considering the weight factor of each conformer from the Boltzmann distribution function and the contribution of the two conformers to the whole reaction was discussed. The calculated kT(ICVT/SCT) at 296 K agrees well with the experimental value. Since experimental data were lacking for other temperatures, a three-parameter rate constant temperature expression for the total reaction within 200-2000 K was fitted to: kT=0.40×10-14T1.05exp(-206.16/T).

  • 加载中
    1. [1]

      (1) Molina, M. J.; Rowland, F. S. Nature 1974, 249, 810.

    2. [2]

      (2) Hammitt, J. K.; Camm, F.; Connell, P. S.; Mooz,W. E.;Wolf, K. .;Wuebbles, D. J.; Bamezai, A. Nature 1987, 330, 711.

    3. [3]

      (3) Zhao, X. S. Acta Phys. -Chim. Sin. 2004, 20, 936.

    4. [4]

      [赵新生. 物理化学学报, 2004, 20, 936.]

    5. [5]

      (4) Hanel, R. A.; Conrath, B. J.; Kunde, V. G.; Prabhakara, C.; evah, I.; Salomonson, V. V.;Wolford, G. J. Geophys. Res. 1972, 77, 2629.

    6. [6]

      (5) Li, L. C.; Zhu, Y. Q.; Cha, D.; Tian, A. M. Acta Phys. -Chim. Sin. 2005, 21, 490

    7. [7]

      [李来才, 朱元强, 查东, 田安民. 物理化 学报, 2005, 21, 490.]

    8. [8]

      (6) Marchionni, G.; Visca, M. Eur. Pat. Appl., 1275678A. 2003, (Chem.Abs. 138): 90675.

    9. [9]

      (7) Sianesi, D.; Marchionni, G.; De Paasquale, R. J. In Organofluorine Chemistry: Principles and Commercial Applications; Banks, R. E. Ed.; Plenum Press: New York, 1994.

    10. [10]

      (8) Marchionni, G.; Ajroldi, G.; Pezzin, G. In Comprehensive Polymer Science. Second Supplement; Agarwal, S. L., Russom, . Eds.; Pergamon: London, 1996.

    11. [11]

      (9) Marchionni, G.; Guarda, P. A. U.S. Patent, 5, 744, 651, 1998

    12. [12]

      (10) Andersen, M. P. S.; Hurley, M. D.;Wallington, T. J.; Blandini, F.; Jensen, N. R.; Librando, V.; Hjorth, J.; Marchionni, G.; vataneo, M.; Visca, M.; Nicolaisen, F. M.; Nielsen, O. J. J. Phys. Chem. A 2004, 108, 1964.

    13. [13]

      (11) Rudolph, J.; Koppmann, R.; Plass-Dülmer, C. Atoms Environ. 1996, 30, 1887.

    14. [14]

      (12) Tanaka, P. L.; Oldfield, S.; Neece, J. D.; Mullins, C. B.; Allen, D. T. Environ. Sci. Technol. 2000, 34, 4470.

    15. [15]

      (13) Tucker, S. C. Truhlar, D. G. New Theoretical Concepts For nderstanding Organic Reaction; Dordrecht, Netherlands: dvanced Study Institute, Kluwer, 1989; pp 291-346.

    16. [16]

      (14) Lu, D. H.; Truong, T. N.; Melissas, V. S. Comput. Phys. Commum. 1992, 71, 235.

    17. [17]

      (15) Garrett, B. C.; Truhlar, D. G. J. Phys. Chem. 1991, 95, 10374.

    18. [18]

      (16) Truhlar, D. G.; Garrett, B. C. Acc. Chem. Res. 1980, 13, 440.

    19. [19]

      (17) Truhlar, D. G.; Isaacson, A. D.; Garrett, B. C. The Theory of hemical Reaction Dynamics; CRC Press: Boca Raton, 1985.

    20. [20]

      (18) Truhlar, D. G.; Garrett, B. C. Annu. Rev. Phys. Chem. 1984, 35, 59.

    21. [21]

      (19) Zhao, Y.; Lynch, B. J.; Truhlar, D. G. J. Phys. Chem. A 2004, 08, 2715.

    22. [22]

      (20) Becke, A. D. Phys. Rev. A 1988, 38, 3098.

    23. [23]

      (21) Becke, A. D. J. Chem. Phys. 1996, 104, 1040.

    24. [24]

      (22) Taghikhani, M.; Parsafar, G. A. J. Phys. Chem. A 2007, 111, 095.

    25. [25]

      (23) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, evision A.01; Gaussian Inc.:Wallingford, CT, 2009.

    26. [26]

      (24) Corchado, J. C.; Chang, Y. Y.; Fast, P. L.; et al. Polyrate, Version .7; University of Minnesota: Minneapolis, 2009.

    27. [27]

      (25) Garrett, B. C.; Truhlar, D. G.; Grev, R. S.; Magnuson, A.W. J. Phys. Chem. 1980, 84, 1730.

    28. [28]

      (26) Lu, D. H.; Truong, T. N.; Melissas, V. S.; Lynch, G. C.; Liu, Y. P.; Garrett, B. C.; Steckler, R.; Isaacson, A. D.; Rai, S. N.; ancock, G. C.; Lauderdale, J. G.; Joseph, T.; Truhlar, D. G. Comput. Phys. Commun. 1992, 71, 235.

    29. [29]

      (27) Liu, Y. P.; Lynch, G. C.; Truong, T. N.; Lu, D. H.; Truhlar, D. G.; Garrett, B. C. J. Am. Chem. Soc. 1993, 115, 2408.

    30. [30]

      (28) Truhlar, D. G. J. Comput. Chem. 1991, 12, 266.

    31. [31]

      (29) Chuang, Y. Y.; Truhlar, D. G. J. Chem. Phys. 2000, 112, 1221.

    32. [32]

      (30) Huber, K. P.; Herzberg, G. Constants of Diatomic Moleculars (Molecular Spectra and Molecular Structure, Vol. 4). Van ostrand Reinhold: New York, 1979.

    33. [33]

      (31) Hsu, K. J.; DeMore,W. B. J. Phys. Chem. 1995, 99, 11141.

    34. [34]

      (32) Louks, L. F.; Larden, K. J. Can. J. Chem. 1967, 45, 2763.

    35. [35]

      (33) Christensen, L. K.;Wallington, T. J.; Guschin, A.; Hurley, M. D. J. Phys. Chem. A 1999, 103, 4202.

    36. [36]

      (34) Notario, A.; Mellouki, A.; Le bras, G. Int. J. Chem. Kinet. 2000, 2, 105.


  • 加载中
    1. [1]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    2. [2]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    3. [3]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    6. [6]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    7. [7]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    8. [8]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    9. [9]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    10. [10]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    11. [11]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    12. [12]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    13. [13]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    14. [14]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    15. [15]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    16. [16]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    17. [17]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    18. [18]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    19. [19]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    20. [20]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

Metrics
  • PDF Downloads(2260)
  • Abstract views(2907)
  • HTML views(44)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return