Citation: HAN Rong-Cheng, YU Min, SHA Yin-Lin. Interaction between CdSeS Quantum Dots and ld Nanoparticles in Solution[J]. Acta Physico-Chimica Sinica, ;2011, 27(01): 255-261. doi: 10.3866/PKU.WHXB20110135 shu

Interaction between CdSeS Quantum Dots and ld Nanoparticles in Solution

  • Received Date: 29 July 2010
    Available Online: 16 December 2010

    Fund Project: 国家重点基础研究发展规划项目(2007CB935801)资助 (2007CB935801)

  • We studied the interaction between CdSeS quantum dots (QDs) and ld nanoparticles (AuNPs) in solution. We found that the photoluminescence (PL) intensity of the QDs was efficiently quenched by the AuNPs with extraordinarily high Stern-Volmer quenching constant (Ksv) values that approach 108 L·mol-1. The quenching efficiency is strongly related to the spectral overlap and the distance between the QDs and AuNPs and is independent of solvent polaritym, ion strength, and pH value. These results suggest that this superquenching behavior can be attributed to a long-range (Förster-type) energy transfer. Our findings allow for the design of exquisite multiple örster resonance energy transfer (FRET)-based biosensors for the highly sensitive and simultaneous monitoring of multiple molecules in live cells.

  • 加载中
    1. [1]

      1. Alivisatos, A. P. J. Phys. Chem., 1996, 100:13226

    2. [2]

      2. Bruchez, M.; Moronne, M.; Gin, P.;Weiss, S.; Alivisatos, A. P.Science, 1998, 281: 2013

    3. [3]

      3. Chan,W. C.W.; Nie, S. M. Science, 1998, 281: 2016

    4. [4]

      4. Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose,S.; Li, J. J.; Sundaresan, G.;Wu, A. M.; Gambhir, S. S.;Weiss, S.Science, 2005, 307: 538

    5. [5]

      5. Liu, X. O.; Atwater, M.;Wang, J. H.; Huo, Q. Colloids Surf. B,2007, 58: 3

    6. [6]

      6. Dulkeith, E.; Morteani, A. C.; Niedereichholz, T.; Klar, T. A.;Feldmann, J.; Levi, S. A.; van Veggel, F. C. J. M.; Reinhoudt, D.N.; Moller, M.; Gittins, D. I. Phys. Rev. Lett., 2002, 89: 203002

    7. [7]

      7. Dubertret, B.; Calame, M.; Libchaber, A. J. Nat. Biotechnol.,2001, 19: 680

    8. [8]

      8. Du, H.; Disney, M. D.; Miller, B. L.; Krauss, T. D. J. Am. Chem.Soc., 2003, 125: 4012

    9. [9]

      9. Nikoobakht, B.; Burda, C.; Braun, M.; Hun, M.; EI-Sayed, M. A.Photochem. Photobiol., 2002, 75: 591

    10. [10]

      10. Gueroui, Z.; Libchaber, A. Phys. Rev. Lett., 2004, 93:166108

    11. [11]

      11. Kulakovich, O.; Strekal, N.; Yaroshevich, A.; Maskevich, S.;Gaponenko, S.; Nabiev, I.;Wog n, U.; Artemyev, M. Nano Lett.,2002, 2: 1449

    12. [12]

      12. Shimizu, K. T.;Woo,W. K.; Fisher, B. R.; Eisler, H. J.; Bawendi,M. G. Phys. Rev. Lett., 2002, 89:117401

    13. [13]

      13. Dyadyusha, L.; Yin, H.; Jaiswal, S.; Brown, T.; Baumberg, J. J.;Booy, F. P.; Melvin, T. Chem. Commun., 2005: 3201

    14. [14]

      14. Oh, E.; Hong, M. Y.; Lee, D.; Nam, S. H.; Yoon, H. C.; Kim, H. S.J. Am. Chem. Soc., 2005, 127: 3270

    15. [15]

      15. Bailey, R. E.; Nie, S. M. J. Am. Chem. Soc., 2003, 125: 7100

    16. [16]

      16. Jang, E.; Jun, S.; Pu, L. Chem. Commun., 2003: 2964

    17. [17]

      17. Pellegrino, T.; Manna, L.; Kudera, S.; Liedl, T.; Koktysh, D.;Rogach, A. L.; Keller, S.; Radler, J.; Natile, G.; Parak,W. J. NanoLett., 2004, 4: 703

    18. [18]

      18. Brust, M.;Walker, M.; Bethell, D.; Schiffrin, D.; Whyman, R.J. Chem. Soc., Chem. Commun., 1994, 7: 801

    19. [19]

      19. Solt, JW; Geuze, H J. Eur. J. Cell Biol., 1985, 38: 87

    20. [20]

      20. Birks, J. B.; Georghio, S. J. Phys. B- At. Mol. Opt. Phys., 1968, 1:958

    21. [21]

      21. Eisenthal, K. B.; Siegel, S., J. Chem. Phys., 1964, 41, 652

    22. [22]

      22. Bennett, R. G. J. Chem. Phys., 1964, 41: 3037

    23. [23]

      23. Lakowicz, J. R. Principles of fluorescence spectroscopy. 3rd ed.Springer: 2006, 954-960

    24. [24]

      24. Medintz, I. L.; Clapp, A. R.; Mattoussi, H.; ldman, E. R.;Fisher, B.; Mauro, J. M. Nature Materials, 2003, 2: 630

    25. [25]

      25. Chen, L. H.; McBranch, D.W.;Wang, H. L.; Helgeson, R.;Wudl,F.; Whitten, D. G. Proc. Nat. Acad. Sci. U. S. A., 1999, 96: 12287

    26. [26]

      26. Jiang, H.; Zhao, X. Y.; Schanze, K. S. Langmuir, 2006, 22: 5541

    27. [27]

      27. Harrison, B. S.; Ramey, M. B.; Reynolds, J. R.; Schanze, K. S.J. Am. Chem. Soc., 2000, 122: 8561

    28. [28]

      28. Guan, H. L.; Zhou, P.; Zhou, X. L.; He, Z. K. Talanta., 2008, 77:319

    29. [29]

      29. Fan, C. H.;Wang, S.; Hong, J.W.; Bazan, G. C.; Plaxco, K.W.;Heeger, A. J. Proc. Nat. Acad. Sci. U. S. A., 2003, 100: 6297

    30. [30]

      30. Swager, T. M. Acc. Chem. Res., 1998, 31: 201

    31. [31]

      31. Demers, L. M.; Ostblom, M.; Zhang, H.; Jang, N. H.; Liedberg,B.; Mirkin, C. A. J. Am. Chem. Soc., 2002, 124: 11248.

    32. [32]

      32. Storhofff, J. J.; Elghanian, R.; Mirkin, C. A.; Letsinger, R. L.Langmuir, 2002, 18: 6666

    33. [33]

      33. Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke,R.; Nann, T. Nat. Methods, 2008, 5: 763

    34. [34]

      34. Wang, F. B.; Peng, Y.; Fan, M. Y.; Liu, Y. N.; Huang, K. L. ActaPhys. -Chim. Sin., 2009, 25: 1125

    35. [35]

      [王芳斌, 彭勇, 范美意, 刘又年, 黄可龙. 物理化学学报, 2009, 25: 1125]

    36. [36]

      35. Ray, P. C.; Darbha, G. K.; Ray, A.;Walker, J.; Hardy,W.Plasmonics, 2007, 2: 173

    37. [37]

      36. Greenham, N. C.; Peng, X. G.; Alivisatos, A. P. Phys. Rev. BCondens.Matter, 1996, 54: 17628


  • 加载中
    1. [1]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    2. [2]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    5. [5]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    6. [6]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    7. [7]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    8. [8]

      Lina Liu Xiaolan Wei Jianqiang Hu . Exploration of Subject-Oriented Undergraduate Comprehensive Chemistry Experimental Teaching Based on the “STS Concept”: Taking the Experiment of Gold Nanoparticles as an Example. University Chemistry, 2024, 39(10): 337-343. doi: 10.12461/PKU.DXHX202405112

    9. [9]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    10. [10]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    11. [11]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

    12. [12]

      Liangyu Gong Jie Wang Fengyu Du Lubin Xu Chuanli Ma Shihai Yan Zhuwei Song Fuheng Liu Xiuzhong Wang . Construction and Practice of “One-Point, Two-Lines and Three-Sides” Innovative Experimental Platform. University Chemistry, 2024, 39(4): 26-32. doi: 10.3866/PKU.DXHX202308023

    13. [13]

      Hongyan Feng Weiwei Li . Reflections on the Safety of Chemical Science Popularization Activities. University Chemistry, 2024, 39(9): 379-384. doi: 10.12461/PKU.DXHX202404087

    14. [14]

      Dongju Zhang Rongxiu Zhu . Construction of Ideological and Political Education in Quantum Chemistry Course: Several Teaching Cases to Reveal the Universal Connection of Things. University Chemistry, 2024, 39(7): 272-277. doi: 10.3866/PKU.DXHX202311032

    15. [15]

      Peifeng Su Xin Lu . Development of Undergraduate Quantum Mechanics Module in Chemistry Department under the “Double First Class” Initiative. University Chemistry, 2024, 39(8): 99-103. doi: 10.3866/PKU.DXHX202401087

    16. [16]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    17. [17]

      Zian Fang Qianqian Wen Yidi Wang Hongxia Ouyang Qi Wang Qiuping Li . The Test Paper for Metal Ion: A Popular Science Experiment Based on Color Aesthetics. University Chemistry, 2024, 39(5): 108-115. doi: 10.3866/PKU.DXHX202310032

    18. [18]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    19. [19]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    20. [20]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

Metrics
  • PDF Downloads(1501)
  • Abstract views(2930)
  • HTML views(39)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return