Citation: LIU Chong, DU Rui, ZHAO Yan-Ying, WANG Hui-Gang, ZHENG Xu-Ming. Resonance Raman Spectroscopy of the Excited State Structural Dynamics of 6-N,N-Dimethyladenine[J]. Acta Physico-Chimica Sinica, ;2011, 27(01): 17-24. doi: 10.3866/PKU.WHXB20110132 shu

Resonance Raman Spectroscopy of the Excited State Structural Dynamics of 6-N,N-Dimethyladenine

  • Received Date: 13 August 2010
    Available Online: 13 December 2010

    Fund Project: 国家重点基础研究发展规划(973) (2007CB815203) (973) (2007CB815203) 国家自然科学基金(21033002, 20573097) (21033002, 20573097)浙江省自然科学基金(R405465)资助项目 (R405465)

  • The A- and B-band electronic excitations and the excited state structural dynamics of 6-N,N-dimethyladenine (DMA) were studied by resonance Raman spectroscopy and density functional theory calculations. The πHπL* transition is the main part of the A-band absorption and its calculated oscillator strength occupies 79% of the A-band absorption. n→Ryd and πH→Ryd transitions where Ryd denotes the diffuse Rydberg orbital play important roles in the B-band electronic transitions and their calculated oscillator strengths occupy about 62% of the B-band absorption. The oscillator strength for the πHπL* transition, which dominates the A-band electronic transition only occupies about 33% of the B-band absorption. The foundamental vibrations of the purine ring deformation stretch plus the C8H/N9H bend mode ν23 and the 5 member ring deformation stretch plus the C8H bend mode ν13, and their overtones and combination bands occupy most of the A-band resonance Raman intensities. Therefore, the 1πHπL* excited state structural dynamics of DMA is mainly along the ν23 and ν13 reaction coordinates. The majority of the B-band resonance Raman intensities are dominated by the fundamental vibrations of ν10, ν29, ν21, ν26, ν40, and their overtones and combination bands. This suggests the B-band excited state structural dynamics of DMA is mostly along the purine ring deformation, the C6N10 stretch, the N9H/C8H/C2H bend and the N(CH3)2 antisymmetric stretch. The appearance of ν26 and ν12 in the A-band resonance Raman spectrum is correlated to the Franck-Condon region 1*/1ππ* conical intersection. The activation of ν21 in the B-band resonance Raman spectrum is correlated to the Franck-Condon region 1ππ*/1πσN9H* conical intersection.

  • 加载中
    1. [1]

      1 Crespo-Hemández, C. E.; Cohen, B.; Hare, P. M.; Kohler, B. Chem. Rev., 2004, 104: 1977

    2. [2]

      2 Sobolewski, A. L.; Domcke,W.; Dedonder-Lardeux, C.; Jouvet, C. Phys. Chem. Chem. Phys., 2002, 4: 1093

    3. [3]

      3 Perun, S.; Sobolewski, A. L.; Domcke,W. J. Am. Chem. Soc., 2005, 127: 6257

    4. [4]

      4 Perun, S.; Sobolewski, A. L.; Domcke,W. Chem. Phys., 2005, 313: 107

    5. [5]

      5 Kang, H.; Jung, B.; Kim, S. K. J. Chem. Phys., 2003, 118: 6717

    6. [6]

      6 Canuel, C.; Mons, M.; Piuzzi, F.; Tardivel, B.; Dimicoli, I.; Elhanine, M. J. Chem. Phys., 2005, 122: 074306

    7. [7]

      7 Samoylova, E.; Lippert, H.; Ullrich, S.; Hertel, I. V.; Radloff,W.; Schultz, T. J. Am. Chem. Soc., 2005, 127: 1782

    8. [8]

      8 Wells, K. L.; Roberts, G. M.; Stavros, V. G. Chem. Phys. Lett., 2007, 446: 20

    9. [9]

      9 Wells, K. L.; Hadden, D. J.; Nix, M. G. D.; Stavros, V. G. J. Phys. Chem. Lett., 2010, 1: 993

    10. [10]

      10 Zierhut, M.; Roth,W.; Fischer, I. Phys. Chem. Chem. Phys., 2004, 6: 5178

    11. [11]

      11 Satzger, H.; Townsend, D.; Zgierski, M. Z.; Patchovskii, S.; Ullrich, S.; Stolow, A. Proc. Natl. Acad. Sci. U. S. A., 2006, 103: 10196

    12. [12]

      12 Nix, M. G. D.; Devine, A. L.; Cronin, B.; Ashfold, M. N. R. J. Chem. Phys., 2007, 126: 124312

    13. [13]

      13 Ullrich, S.; Schultz, T.; Zgierski, M. Z.; Stolow, A. Phys. Chem. Chem. Phys., 2004, 6: 2796

    14. [14]

      14 Ullrich, S.; Schultz, T.; Zgierski, M. Z.; Stolow, A. J. Am. Chem. Soc., 2004, 126: 2262

    15. [15]

      15 Ritze, H. H.; Lippert, H.; Samoylova, E.; Smith, V. R.; Hertel, I. V.; Radloff,W.; Schultz, T. J. Chem. Phys., 2005, 122: 224320

    16. [16]

      16 Longworth, J.W.; Rahn, R. O.; Shulman, R. G. J. Chem. Phys., 1966, 45: 2930

    17. [17]

      17 Wilson, R.W.; Callis, P. R. Photochem. Photobiol., 1974, 20: 345

    18. [18]

      18 Eastman, J.W. Ber. Bunsen-Ges. Phys. Chem., 1969, 75: 407

    19. [19]

      19 Parusel, A. B. J.; Rettig,W.; Rotkiewicz, K. J. Phys. Chem. A, 2002, 106: 2293

    20. [20]

      20 Schwalb, N. K.; Temps, F. Phys. Chem. Chem. Phys., 2006, 8: 5229

    21. [21]

      21 Li, S. P.;Wu, G. M.; Zheng, X. M. Chem. J. Chin. Univ., 2004, 25: 1495

    22. [22]

      [李少鹏, 吴光明, 郑旭明. 高等学校化学学报, 2004, 25: 1495]

    23. [23]

      22 Myer, A. B.; Li, B.; Ci, X. J. Chem. Phys., 1988, 89: 1876

    24. [24]

      23 Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision B.02. Pittsburgh, PA: Gaussian Inc., 2003

    25. [25]

      24 Sadlej-Sosnowska, N.; Kry wski, T. M. Chem. Phys. Lett., 2009, 476: 191

    26. [26]

      25 Rauhut, G.; Pulay, P. J. Phys. Chem., 1995, 99: 3091

    27. [27]

      26 Marian, C. M. J. Chem. Phys., 2005, 122: 104314

    28. [28]

      27 Foresman, J. B.; Keith, T. A.;Wiberg, K. B.; Snoonian, J.; Frisch, M. J. J. Phys. Chem., 1996, 100: 16098

    29. [29]

      28 Wu, X. F.; Zheng X.;Wang, H. G.; Zhao, Y.Y.; Guan X. G.; Phillips, D. L.; Chen, X. B.; Fang,W. H. J. Chem. Phys., 2010, 133: 134507

    30. [30]

      29 Conti, I.; Garavelli, M.; Orlandi, G. J. Am. Chem. Soc., 2009, 131: 16118


  • 加载中
    1. [1]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    2. [2]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    3. [3]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    4. [4]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    5. [5]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    6. [6]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    7. [7]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    8. [8]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    9. [9]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    10. [10]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    11. [11]

      Meijin Li Xirong Fu Xue Zheng Yuhan Liu Bao Li . The Marvel of NAD+: Nicotinamide Adenine Dinucleotide. University Chemistry, 2024, 39(9): 35-39. doi: 10.12461/PKU.DXHX202401027

    12. [12]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    13. [13]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    14. [14]

      Xiaofeng Xia Jielian Zhu . Innovative Comprehensive Experimental Design: Synthesis of 6-Fluoro-N-benzoyl Tetrahydroquinoline. University Chemistry, 2024, 39(10): 344-352. doi: 10.12461/PKU.DXHX202405063

    15. [15]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    16. [16]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    17. [17]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    18. [18]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    19. [19]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    20. [20]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

Metrics
  • PDF Downloads(1208)
  • Abstract views(2671)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return