Citation: WAN Jing-Bai, LIU Shu-Zhen, PAN Shu-Ying, XU Xuan, LI Xu, YE Bing. Stability and Electronic Spectra of Chlorin e6 Lysine Amides[J]. Acta Physico-Chimica Sinica, ;2011, 27(01): 32-38. doi: 10.3866/PKU.WHXB20110127 shu

Stability and Electronic Spectra of Chlorin e6 Lysine Amides

  • Received Date: 24 July 2010
    Available Online: 9 December 2010

    Fund Project: 广东省教育部产学研项目(2010B090400184) (2010B090400184)广东省自然科学资金项目(9151063101000037)资助 (9151063101000037)

  • The geometric configurations of chlorin e6 and six designed e6 lysine amides were optimized using density functional theory at the B3LYP/6-31G* level. Based on the obtained minimum energy structure, a single point calculation was carried out at the B3LYP/6-31G** level. The electronic spectra of these compounds were calculated using time dependent density functional theory at the LSDA/6-31G** level. The results indicate that the e6 lysine amides, in which the carboxyl of e6 connects with the ε-NH2 of lysine, are more stable. Among them, the 15-acetamide Yε has the highest stability. The formation of lysine amides improves the water-solubility and leads to a slightly poor coplanarity of the chlorin macrocycle in e6. Therefore, the frontier orbital gaps of the e6 lysine amides are slightly higher than that of e6, causing the long wavelength absorption to a small blue-shift of 16-39 nm. The adsorption wavelength is still in the range of 600-900 nm for photodynamic therapy. Furthermore, the long wavelength absorption is strongly affected by the conformation of the molecule. By comparison with Yε, in which the lysine amide group and the chlorin macrocycle are almost coplanar, the planarity of the chlorin ring of Yε1 and Yε2, in which the lysine amide is almost perpendicular to the chlorin ring, is improved and results in red shifts of 53 nm and 50 nm for their long wavelength absorptions, respectively, the average adsorption wavelength of Yε, Yε1, and Yε2 is 18 nm larger than that of e6.

  • 加载中
    1. [1]

      1 Bisland, S. K.; Singh, D.; Gariépy, J. Bioconjugate Chem., 1999, 10: 982

    2. [2]

      2 Uzdenskya, A. B.; Dergachevaa, O. Y.; Zhavoronkova, A. A.; Reshetnikovb, A. V.; Ponomarevc, G. V. Life Sciences, 2004, 74: 2185

    3. [3]

      3 Chen, J. B.; Ou, M. R.; Li, Z. Q.; Xu, X. P. Strait Pharmaceutical Journal, 2003, 15(6): 8

    4. [4]

      [陈杰波, 欧敏锐, 李忠琴, 许小平. 海峡药学, 2003, 15(6): 8]

    5. [5]

      4 Spikes, J. D. J. Photochem. Photobiol. B: Biol., 1990, 6(3): 259

    6. [6]

      5 Zhang, L.; Xu, D. Y. Chin. J. Org. Chem., 1999, 19(4): 424

    7. [7]

      [章玲, 许德余. 有机化学, 1999, 19(4): 424]

    8. [8]

      6 Pellerito, C.; D′ Agati, P.; Fiore, T.; Mansueto, C.; Mansueto, V.; Stocco, G.; Nagy, L.; Pellerito, L. J. Inorg. Biochem., 2005, 99(6): 1294

    9. [9]

      7 Vermathen, M.; Vermathen, P.; Simonis, U.; Bigler, P.; Langmuir, 2008, 24(21): 12521

    10. [10]

      8 Mennenga, A.; G?rtner,W.; Lubitz,W.; G?rner, H. Phys. Chem. Chem. Phys., 2006, 8: 5444

    11. [11]

      9 Fang, Y.; Xu, D. Y. Chin. J. Laser Med. Surg., 1999, 8(4): 235

    12. [12]

      [方瑛, 许德余. 中国激光医学杂志, 1999, 8(4): 235]

    13. [13]

      10 Ol'shevskaya, V. A.; Savchenko, A. N.; Zaitsev, A. V.; Kononova, E. G.; Petrovskii, P. V.; Ramonova, A. A.; Tatarskiy, V. V.; Uvarov, O. V.; Moisenovich, M. M.; Kalinin, V. N.; Shtil, A. A. J. Organomet. Chem., 2009, 694: 1632

    14. [14]

      11 Hargus, J. A.; Fronczek, F. R.; Vicente, M. G. H.; Smith, K. M. Photochem. Photobiol., 2007, 83: 1006

    15. [15]

      12 Harubumi, K.; Kinya, F.; Masami, O. Lung Cancer, 2003, 42(1): 103

    16. [16]

      13 Nelson, J. S.; Robert,W. G.; Berns, M.W. Cancer Res. 1987, 47: 4681

    17. [17]

      14 Walsh, P. J.; rdon, K. C.; Officer, D. L. J. Mol. Struct., 2006, 759: 17

    18. [18]

      15 Koseki, J.; Maezono, R.; Tachikawa, M. J. Chem. Phys., 2008, 129: 085103/1

    19. [19]

      16 Kuzmitsky, V. A.; Volkovich, D. I. J. Appl. Spectrosc., 2008, 75(1): 27

    20. [20]

      17 Kuz′mitskii, V. A.; Knyukshto, V. N.; Gael, V. I.; Zen′kevich, E. I.; Sagun, E. I.; Pukhlikova, N. A.; Lebedeva, V. S.; Mironov, A. F. J. Appl. Spectrosc., 2003, 70(1): 43

    21. [21]

      18 Liu, X. Q.; Xu, Z. G. Comput. Appl. Chem., 2009, 26(3): 339

    22. [22]

      [刘学琴, 徐志广, 计算机与应用化学, 2009, 26(3): 339]

    23. [23]

      19 Pajunen, A.; Stapelbroek-M?llmann, M. E.; Hynninen, P. H. Acta Cryst., 1996, C52: 743

    24. [24]

      20 Lee, C.; Yang,W.; Parr, R. G. Phys. Rev. B, 1988, 37: 785

    25. [25]

      21 Reed, A. E.;Weinhold, F. J. Chem. Phys., 1983, 78: 4066

    26. [26]

      22 Vosko, S. H.;Wilk, L.; Nusair, M. J. Chem. Phys., 1980, 58: 1200

    27. [27]

      23 Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03, Revision B.03. Pittsburgh, PA: Gaussian Inc., 2003

    28. [28]

      24 Ghose, A. K.; Pritchett, A.; Crippen, G. M. J. Comp. Chem., 1988, 9(1): 80

    29. [29]

      25 Viswanadhan, V. N.; Ghose, A. K.; Revankar, G. N.; Robins, R. K. J. Chem. Inf. Comput. Sci., 1989, 29(3): 163

    30. [30]

      26 Ren, X. F.; Ren, A. M.;Wang, Q.; Feng, J. K. Acta Phys. -Chim. Sin., 2010, 26(1): 110

    31. [31]

      [任雪峰, 任爱民, 王钦, 封继康. 物理化学学报, 2010, 26(1): 110]

    32. [32]

      27 Isakau, H. A.; Trukhacheva, T. V.; Petrov, P. T. J. Pharm. Biomed. Anal., 2007, 45: 20

    33. [33]

      28 Gladkova, O. L.; Parkhats, M. V.; rbachova, A. N.; Terekhov, S. N. Spectrochimica Acta Part A, 2010, 76: 388

    34. [34]

      29 Isakau, H. A.; Parkhats, M. V.; Knyukshto, V. N.; Dzhagarov, B. M.; Petrov, E. P.; Petrov, P. T. J. Photochem. Photobiol. B: Biol., 2008, 92: 165


  • 加载中
    1. [1]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    2. [2]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    3. [3]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    4. [4]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    7. [7]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    8. [8]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    9. [9]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    10. [10]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    11. [11]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    12. [12]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    13. [13]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    14. [14]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    15. [15]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    16. [16]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    17. [17]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    18. [18]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    19. [19]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    20. [20]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

Metrics
  • PDF Downloads(1255)
  • Abstract views(3107)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return