Citation: HAO Ping, GAO Yun-Yan, OU Zhi-Ze, LI Yi, WANG Zhong-Li, WANG Xue-Song. Preparation of Aminopyridine Grafted Carbon Nanotube and Its Interaction with Horseradish Peroxidase[J]. Acta Physico-Chimica Sinica, ;2011, 27(01): 233-240. doi: 10.3866/PKU.WHXB20110125 shu

Preparation of Aminopyridine Grafted Carbon Nanotube and Its Interaction with Horseradish Peroxidase

  • Received Date: 17 August 2010
    Available Online: 8 December 2010

    Fund Project: 教育部留学回国人员科研启动基金(N9YK0003, N9YK0005) (N9YK0003, N9YK0005) 西北工业大学基础研究基金(NPU-FFR-JC200822) (NPU-FFR-JC200822)西北工业大学翱翔之星项目(07XE0152)资助 (07XE0152)

  • Carboxylic-functionalized multiwalled carbon nanotube (MWCNT-COOH) is obtained by oxidation with potassium bichromate and further modification by amide condensation afforded aminopyridine-grafted MWCNT (MWCNT-AP). The MWCNT-AP was characterized by Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy (1H-NMR) and X-ray photoelectron spectroscopy (XPS). Transmission electron microscopy (TEM) results suggest that MWCNTCOOH aggregates in ethanol and that MWCNT-AP is stable and well dispersed in solution. Horseradish peroxidase (HRP) physically adsorbed onto the surfaces of MWCNT-AP and MWCNT-COOH and the adsorption amounts were 187.5 and 153.0 μg·mg-1, respectively. UV-Vis spectra showed that the Soret band of HRP red-shifted markedly after adsorption onto MWCNT-AP or MWCNT-COOH indicating that the binding site of MWCNT-AP or MWCNT-COOH is near the heme pocket of HRP. Circular dichroism spectral results demonstrate that the secondary structure of HRP is influenced by MWCNT-AP. Enzyme-kinetic studies show that MWCNT-AP may adsorb HRP and its substrate 3,3',5,5'-tetramethylbenzidine (TMB) effectively, and the maximum reaction rate (Vmax) of HRP increases significantly after interaction with MWCNT-AP.

  • 加载中
    1. [1]

      1 Iijima, S. Nature, 1991, 354: 56

    2. [2]

      2 Saito, R.; Dresselhaus, G.; Dresselhaus, M. S. Physical Properties of Carbon Nanotubes. London: Imperial College Press, 1998

    3. [3]

      3 Liu, Z.; Sun, X. M.; Nakayama-Ratchford, N.; Dai, H. J. ACS Nano, 2007, 1: 50

    4. [4]

      4 Wang, Z. G.;Wang, Y.; Xu, H.; Li, G.; Xu, Z. K. J. Phys. Chem. C, 2009, 113: 2955

    5. [5]

      5 Guldi, D. M.; Holzinger, M.; Hirsch, A.; Georgakilas, V.; Prato. M. Chem. Commun., 2003: 1130

    6. [6]

      6 Ji, S.; Liu, C. ; Zhang, B.; Yang, F.; Xu, J.; Long, J.; Jin, C.; Fu, D.; Ni, Q.; Yu, X. Biochim. Biophys. Acta, 2010, 1806: 29

    7. [7]

      7 Cao, Q.; Rogers, J. A. Adv. Mater., 2009, 21: 29

    8. [8]

      8 Kharisov, B. I.; Kharissova, O. V.; Gutierrez, H. L.; Mendez U. O. Ind. Eng. Chem. Res., 2009, 48: 572

    9. [9]

      9 Dou,W. L.; Xin, X.; Xu, G. Y. Acta Phys. -Chim. Sin., 2009, 25: 382

    10. [10]

      [窦文龄, 辛霞, 徐桂英. 物理化学学报, 2009, 25: 382]

    11. [11]

      10 Li, J.; Yang, F.; Guo, G.; Yang, D.; Long, J.; Fu, D.; Lu, J.;Wang, C. Polym. Int., 2010; 59: 169

    12. [12]

      11 Liu, Y.;Wang, M.; Zhao, F.; Xu, Z.; Dong, S. Biosens. Bioelect., 2005, 21: 984

    13. [13]

      12 Zheng, M.; Ja ta, A.; Semke, E. D.; Diner, B. A.; Mclean, R. S.; Lustig, S. R.; Richardson. R. E.; Tassi, N. G. Nat. Mater., 2003, 2: 338

    14. [14]

      13 Nepal, D.; Geckeler, K. E. Small, 2007, 3: 1259

    15. [15]

      14 Yu, J. G.; Huang, K. L.; Liu, S. Q.; Tang, J. C.; Chen, L. Q. Chin. J. Inorg. Chem., 2008, 24: 293

    16. [16]

      [于金刚, 黄可龙, 刘素琴, 唐金春, 陈立泉. 无机化学学报, 2008, 24: 293]

    17. [17]

      15 Tseng,W.; Tseng, C.; Chuang, P.; Lo, A.; Kuo, C. J. Phys. Chem. C, 2008, 112: 18431

    18. [18]

      16 Jeong,W.; Kessler, M. R. Carbon, 2009, 47: 2406

    19. [19]

      17 Georgakilas, V.; Bourlinos, A.; urnis, D.; Tsoufis, T.; Trapalis, C.; Mateo-Alonso, A.; Prato, M. J. Am. Chem. Soc., 2008, 130: 8733

    20. [20]

      18 Zhang,W.; Shaikh, A. U.; Tsui, E. Y.; Swager, T. M. Chem. Mater., 2009, 21: 3234

    21. [21]

      19 Shi, X.;Wang, S. H.; Shen, M.; Antwerp, M. E.; Chen, X.; Li, C.; Petersen, E. J.; Huang, Q.;Weber,W. J.; Baker, J. R. Biomacromolecules, 2009, 10: 1744

    22. [22]

      20 Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chem. Rev., 2006, 106: 1105

    23. [23]

      21 Li, X.; Chen,W.; Zhan, Q.; Dai, L.; Sowards, L.; Pender, M.; Naik, R. R. J. Phys. Chem. B, 2006, 110: 12621

    24. [24]

      22 Balavoine, F.; Schultz, P.; Richard, C.; Mallouh, V.; Ebbesen, T. W.; Mioskowski, C. Angew. Chem. Int. Ed., 1999, 38: 1912

    25. [25]

      23 Wang, J.; Li, M.; Shi, Z.; Li, N.; Gu, Z. Anal. Chem., 2002, 74: 1993

    26. [26]

      24 Chen, R. J.; Zhang, Y.;Wang, D.; Dai, H. J. Am. Chem. Soc., 2001, 123: 3838

    27. [27]

      25 Liu, J.; Zhang, L.; Zhang, S. Anal. Biochem., 2007, 370: 180

    28. [28]

      26 Chalkias, N. G.; Kahawong, P.; Giannelis, E. P. J. Am. Chem. Soc., 2008, 130: 2910

    29. [29]

      27 Allen, B. L.; Kotchey, G. P.; Chen, Y.; Yanamala, N. V. K.; Klein-Seetharaman, J.; Kagan, V. E.; Star, A. J. Am. Chem. Soc., 2009, 131: 17194

    30. [30]

      28 Cai, C.; Chen, J. Acta Chim. Sinica, 2004, 62: 335

    31. [31]

      [蔡称心, 陈静. 化学学报, 2004, 62: 335]

    32. [32]

      29 Wei, X. L.; Luo,W.;Wei, X.W. Chin. J. Org. Chem., 2007, 27: 153

    33. [33]

      [魏祥龙, 罗薇, 魏先文. 有机化学, 2007, 27: 153]

    34. [34]

      30 Garcin, E. D.; Arvai, A. S.; Rosenfeld, R. J.; Kroeger, M. D.; Crane, B. R.; Andersson, G.; Andrews, G.; Hamley, P. J.; Mallinder, P. R.; Nicholls, D. J.; St-Gallay, S. A.; Tinker, A. C.; Gensmantel, N. P.; Mete, A.; Cheshire, D. R.; Connolly, S.; Stuehr, D. J.; Aberg, A.;Wallace, A. V.; Tainer1, J. A.; Getzoff, E. D. Nat. Chem. Biol., 2008, 4: 700

    35. [35]

      31 Kuhn, B.; Mohr, P.; Stahl, M. J. Med. Chem., 2010, 53: 2601

    36. [36]

      32 Shannon, L. M.; Kay, E.; Lew, J. Y. J. Biol. Chem., 1996, 241: 2166

    37. [37]

      33 Beers, R. F.; Sizer, I.W. J. Biol. Chem. 1952, 195: 133

    38. [38]

      34 Li, Z. H.;Wang, X. Q.;Wang, M.;Wang, F. F.; Ge, H. L. Tribol. Intern., 2006, 39: 953

    39. [39]

      35 Lu, J. Carbon, 2007, 45: 1599

    40. [40]

      36 Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.;Wang, T.; Feng, J.; Yang, D.; Perrett, S.; Yan, X. Nat. Nanotechnol., 2007, 2: 577

    41. [41]

      37 Josephy, P. D.; Eling, T., Mason, R. P. J. Biol. Chem., 1982, 257: 3669

    42. [42]

      38 Barros, E. B.; Filho, A. G. S.; Lemos, V.; Filho, J. M.; Fagan, S. B.; Herbst, M. H.; Rosolen, J. M.; Luen , C. A.; Huber, J. G. Carbon, 2005, 43: 2495

    43. [43]

      39 Georgakilas, V.; Kordatos, K.; Prato, M.; Guldi, D. M.; Holzinger, M.; Hirsch, A. J. Am. Chem. Soc., 2002, 124: 760

    44. [44]

      40 Shanmugharaj, A. M.; Bae, J. H.; Lee, K. Y.; Noh,W. H.; Lee, S. H.; Ryu, S. H. Comp. Sci. Techn., 2007, 67: 1813

    45. [45]

      41 Okpalu , T. I. T.; Papakonstantinou, P.; Murphy, H.; McLaughlin, J.; Brown, N. M. D. Carbon, 2005, 43: 153

    46. [46]

      42 Xia,W.;Wang, Y.; Bergstraber, R.; Kundu, S.; Muhler, M. Appl. Surf. Sci., 2007, 254: 247

    47. [47]

      43 Renganathan, V.; ld, M. H. Biochemistry, 1986, 25: 1626

    48. [48]

      44 Zhao, X.; Liu, R.; Chi, Z.; Teng, Y.; Qin, P. J. Phys. Chem. B, 2010, 114: 5625

    49. [49]

      45 Liu, C.; Hu, J. Electroanalysis, 2008, 20: 1067

    50. [50]

      46 Li, D. J.; Yuan, L.; Yang, Y.; Deng, X. Y.; Lu, X. Y.; Huang, Y.; Cao, Z.; Liu, H.; Sun, X. L. Sci. China Life Sci., 2009, 39: 596

    51. [51]

      [李德军, 袁丽, 杨莹, 邓湘云, 吕晓迎, 黄炎, 曹铮, 刘浩, 孙学良. 中国科学C 辑: 生命科学, 2009, 39: 596]

    52. [52]

      47 Al-Azzam,W.; Pastrana, E. A.; Ferrer, Y.; Huang, Q.; Schweitzer-Stenner, R.; Griebenow K. Biophys. J., 2002, 83: 3637

    53. [53]

      48 Kamiya, N.; Okazaki, S.; to, M. Biotechnol.Tech., 1997, 11: 375

    54. [54]

      49 Kelly, S. M.; Jess, T. J.; Price N. C. Biochim. Biophys. Acta, 2005, 1751: 119

    55. [55]

      50 Holzwarth, G.; Doty, P. J. Am. Chem. Soc., 1965, 87: 218

    56. [56]

      51 Thongsook, T.; Whitaker, J. R.; Smith, G. M.; Barrett, D. M. J. Agric. Food Chem., 2007, 55: 1009

    57. [57]

      52 Yang, J. T.;Wu, C. S. C.; Martinez, H. M. Methods Enzymol., 1986, 130: 208

    58. [58]

      53 Kim, B. J.; Kang, B. K.; Bahk, Y. Y.; Yoo, K. H.; Lim, K. J. Curr. Appl. Phys., 2009, 9: 263

    59. [59]

      54 Zuo, X.; Peng, C.; Huang, Q.; Song, S.;Wang, L.; Li, D.; Fan, C. Nano Res., 2009, 2: 617

    60. [60]

      55 Luo, X.; Killard, A. J.; Morrin, A.; Smyth, M. R. Anal. Chim. Acta, 2006, 575: 39

    61. [61]

      56 Liu, Q. R.; Piao, L. Y., Li, Y. D.;Wang, C. Chin. Sci. Bull., 2007, 52: 2468

    62. [62]

      [柳泉润, 朴玲钰, 李永丹, 王琛. 科学通报, 2007, 52: 2468]

    63. [63]

      57 Liu, L.;Wang, T.; Li, J.; Guo, Z. X.; Dai, L.; Zhang, D.; Zhu, D. Chem. Phys. Lett., 2003, 367: 747

    64. [64]

      58 Boul, P. J.; Cho, D.; Rahman, G. M. A.; Marquez, M.; Ou, Z.; Kadish, K. M.; Guldi, D. M.; Sessler, J. L. J. Am. Chem. Soc., 2007, 129: 5683

    65. [65]

      59 Song, Y.; Qu, K.; Zhao, C.; Ren, J.; Qu, X. Adv. Mater., 2010, 22: 2206

    66. [66]

      60 Veitch, N. C.; Smith, A. T. Adv. Inorg. Chem., 2001, 51: 107


  • 加载中
    1. [1]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    2. [2]

      Haihua Yang Minjie Zhou Binhong He Wenyuan Xu Bing Chen Enxiang Liang . Synthesis and Electrocatalytic Performance of Iron Phosphide@Carbon Nanotubes as Cathode Material for Zinc-Air Battery: a Comprehensive Undergraduate Chemical Experiment. University Chemistry, 2024, 39(10): 426-432. doi: 10.12461/PKU.DXHX202405100

    3. [3]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    4. [4]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    5. [5]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    6. [6]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    7. [7]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    8. [8]

      Rong Tian Yadi Yang Naihao Lu . Comprehensive Experimental Design of Undergraduate Students Based on Interdisciplinarity: Study on the Effect of Quercetin on Chlorination Activity of Myeloperoxidase. University Chemistry, 2024, 39(8): 247-254. doi: 10.3866/PKU.DXHX202312064

    9. [9]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    10. [10]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    11. [11]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    12. [12]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    13. [13]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    14. [14]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    15. [15]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    17. [17]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    18. [18]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    19. [19]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    20. [20]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

Metrics
  • PDF Downloads(1429)
  • Abstract views(3020)
  • HTML views(49)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return