Citation: XIE Juan, WANG Hu, DUAN Ming. Controlled Growth of Self-Assembled ZnO Thin Films and Characterization of Their Photocatalytic Properties[J]. Acta Physico-Chimica Sinica, ;2011, 27(01): 193-198. doi: 10.3866/PKU.WHXB20110124 shu

Controlled Growth of Self-Assembled ZnO Thin Films and Characterization of Their Photocatalytic Properties

  • Received Date: 27 July 2010
    Available Online: 8 December 2010

    Fund Project: 油气藏地质及开发工程国家重点实验室开放基金(西南石油大学)(PLN0805)资助项目 (西南石油大学)(PLN0805)

  • Self-assembled ZnO thin films with controlled sizes were successfully prepared by varying the processing parameters. The films have a photonic band gap, which extends the absorption range to the visible light region. The photocatalytic activities of the ZnO thin films were evaluated by the degradation of methyl orange (MO). The crystal structure of ZnO was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that the ZnO thin films exhibit od photocatalytic activities under sunlight. Furthermore, the photocatalytic activities of the ZnO thin films were highly dependent on sphere size. With an increase in ZnO sphere size, the degradation efficiency toward MO decreased. The photodegradation can be described using a pseudo-first-order kinetics equation.

  • 加载中
    1. [1]

      1 Karunakaran, C.; Dhanalakshmi, R. Radiat. Phys. Chem., 2009, 78: 8

    2. [2]

      2 Lu, H. M.; Takata, T.; Lee, Y. Chem. Mater., 2004, 16: 846

    3. [3]

      3 Liao, D. L.; Badour, C. A.; Liao, B. Q. J. Photoch. Photobio. A, 2008, 194(1): 11

    4. [4]

      4 Hu, J. Q.; Bando, Y. Appl. Phys. Lett., 2003, 82: 1401

    5. [5]

      5 Su, C.; Hong, B. Y.; Tseng, C. M. Catal. Today, 2004, 96: 119

    6. [6]

      6 Kansal, S. K.; Singh, M.; Sud, D. J. Hazard. Mater., 2008, 153: 412

    7. [7]

      7 Evgenidou, E.; Konstantinou, I.; Fytianos, K.; Poulios, I.; Albanis, T. Catal. Today, 2007, 124: 156

    8. [8]

      8 Karunakaran, C.; Dhanalakshmi, R. Sol. Energ. Mat. Sol. C, 2008, 92: 1315

    9. [9]

      9 Zhang, J. H.; Xiao, X.; Nan, J. M. J. Hazard. Mater., 2010, 176: 617

    10. [10]

      10 Sun, X. M.; Deng, Z. X.; Li, Y. D. Mater. Chem. Phys., 2003, 80: 366

    11. [11]

      11 Gao, P. X.;Wang, Z. L. J. Am. Chem. Soc., 2003, 125: 11299

    12. [12]

      12 Zhai, X. H; Long, H. J.; Dong, J. Z.; Cao, Y. A. Acta Phys. -Chim. Sin., 2010, 26: 663

    13. [13]

      [翟晓辉, 龙绘锦, 董江舟, 曹亚安. 物理化学学报, 2010, 26: 663]

    14. [14]

      13 Devi, L. G.; Reddy, K. M. Appl. Surf. Sci., 2010, 256: 3116

    15. [15]

      14 Nguyen-Phan, T. D.; Pham, V. H.; Cuong, T. V.; Hahn, S. H.; Kim, E. J.; Chung, J. S.; Hur, S. H.; Shin, E.W. Mater. Lett., 2010, 64: 1387

    16. [16]

      15 Zhang, Y. R.;Wan, J.; Ke, Y. Q. J. Hazard. Mater., 2010, 177: 750

    17. [17]

      16 Zhu, X. Q.; Zhang, J. L.; Chen, F. Chemosphere, 2010, 78: 1350

    18. [18]

      17 Vayssieres, L. Adv. Mater., 2003, 15(5): 464

    19. [19]

      18 Ullah, R.; Dutta, J. J. Hazard. Mater., 2008, 156: 194

    20. [20]

      19 Xie, J. S.;Wu, Q. S. Mater. Lett., 2010, 64: 389

    21. [21]

      20 Sobana, N.; Swaminathan, M. Sol. Energ. Mat. Sol. C, 2007, 91: 727

    22. [22]

      21 Daneshvar, N.; Aber, S.; Seyed Dorraji, M. S.; Khataee, A. R.; Rasoulifard, M. H. Sep. Purif. Technol., 2007, 58: 91

    23. [23]

      22 Liu, Z. L.; Deng, J. C.; Deng, J. J.; Li, F. F. Mat. Sci. Eng. B-Solid, 2008, 150: 99

    24. [24]

      23 Xie, J.; Deng, H.; Xu, Z. Q.; Li, Y.; Huang, J. J. Cryst. Growth, 2006, 292: 227

    25. [25]

      24 Wang, H.; Yan, K. P.; Xie, J.; Duan, M. Mat. Sci. Semicon. Proc., 2008, 11: 44

    26. [26]

      25 Yang, H. Q.; Li, L.; Song, Y. Z.; He, P.; Yang,W. Y.; Ma, J. H.; Chen, D. C.; Fang, Y. Sci. China Ser. B, 2007, 37:418

    27. [27]

      [杨合情, 李丽, 宋玉哲, 贺萍, 杨文玉, 马军虎, 陈迪春, 房喻. 中国科学B: 化学, 2007, 37:418]

    28. [28]

      26 Yassitepe, E.; Yatmaz, H. C.; Ozturk, C.; Ozturk, K.; Duran, C. J. Photoch. Photobio. A, 2008, 198: 1

    29. [29]

      27 Rao, A. N.; Sivasankar, B.; Sadasivam, V. J. Hazard. Mater., 2009, 166: 1357


  • 加载中
    1. [1]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    2. [2]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    3. [3]

      Bing ShenTongwei YuanWenshuang ZhangYang ChenJiaqiang Xu . Complex shell Fe-ZnO derived from ZIF-8 as high-quality acetone MEMS sensor. Chinese Chemical Letters, 2024, 35(11): 109490-. doi: 10.1016/j.cclet.2024.109490

    4. [4]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    5. [5]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    6. [6]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    9. [9]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    10. [10]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    11. [11]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    12. [12]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    13. [13]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    16. [16]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    17. [17]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    18. [18]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    19. [19]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    20. [20]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

Metrics
  • PDF Downloads(1583)
  • Abstract views(3003)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return