Citation: LU Xue-Bin, GUO Zhao-Hui, HUANG Rong, CHEN Ming-An. Preparation of a (3-Mercaptopropyl)triethoxylsilane Film on Copper and Its Corrosion Protective Performance[J]. Acta Physico-Chimica Sinica, ;2011, 27(01): 108-112. doi: 10.3866/PKU.WHXB20110121 shu

Preparation of a (3-Mercaptopropyl)triethoxylsilane Film on Copper and Its Corrosion Protective Performance

  • Received Date: 24 June 2010
    Available Online: 6 December 2010

  • (3-Mercaptopropyl)triethoxysilane (MPTES) was hydrolyzed in acid or basic ethanol-water solution. Fourier transform infrared (FTIR) spectroscopy was used to characterize the structures of MPTES solutions and MPTES films that formed on copper. The corrosion protective performance of the MPTES films was evaluated by polarization curves and electrochemical impedance spectroscopy (EIS). The results showed that MPTES was hydrolyzed to a certain extent with the formation of Si―OH groups in an acid silane solution and the degree of hydrolysis increased during the aging process of the solution at room temperature. However, a small amount of MPTES was hydrolyzed in the basic silane solution and a large number of SiOCH2CH3 groups were found in it. More Si ―O― Si bonds were formed in the film obtained from the acid silane solution compared to the film formed in the basic silane solution. The polarization curves showed that the MPTES films could decrease the corrosion current density of the copper electrodes; the protection efficiencies of the films were 90.3% (for the acid film) and 79.2% (for the basic film). EIS plots indicated that the basic film lost its protective capability after 24 h of immersion in 3.5% (w) NaCl solution while the acid film showed increasing impedance.

  • 加载中
    1. [1]

      1 Li, C. Heat Treat. Met., 2000, 8: 38

    2. [2]

      [李灿. 金属热处理, 2000, 8: 38]

    3. [3]

      2 Hu, J. M.; Liu, L.; Zhang, J. T.; Zhang, J. Q.; Cao, C. N. Acta etall. Sin., 2004, 40: 1189

    4. [4]

      [胡吉明, 刘倞, 张金涛, 张鉴清, 曹楚南. 金属学报, 2004, 40: 1189]

    5. [5]

      3 Li, S. M.;Wang, Y. G.; Liu, J. H.;Wei,W. Acta Phys. -Chim. Sin., 2007, 23: 1631

    6. [6]

      [李松梅, 王勇干, 刘建华, 韦巍. 物理化学学报, 2007, 23: 1631]

    7. [7]

      4 Li, Y. S.; Lu,W. J.;Wang, Y.; Tran, T. Spectrochim. Acta A, 2009, 73: 922

    8. [8]

      5 Zucchi, F.; Frignani, A.; Grassi, V.; Balbo, A.; Trabanelli, G. Mater. Chem. Phys., 2008, 110: 263

    9. [9]

      6 Chen, M. A.; Yang, X.; Zhang, X. M.; Li, H. Z.; Lu, X. B.; Liu, C. R. Chin. J. Nonferrous Met., 2008, 18: 24

    10. [10]

      [陈明安, 杨汐, 张新明, 李慧中, 路学斌, 刘超仁. 中国有色金属学报, 2008, 18: 24]

    11. [11]

      7 Ferreira, M. G. S.; Duarte, R. G.; Montemor, M. F.; Simões, A. M. P. Electrochim. Acta, 2004, 49: 2927

    12. [12]

      8 Wu, H. J.; Lu, J. T. Acta Phys. -Chim. Sin., 2009, 25: 1743 [吴海江, 卢锦堂. 物理化学学报, 2009, 25: 1743]

    13. [13]

      9 Peng, T. L.; Man, R. L. Journal of Rare Earths, 2009, 27: 159

    14. [14]

      10 Huang, L.; Lin, K. F.; Yang, F. Z.; Xu, S. K.; Zhou, S. M. Electrochemistry, 2005, 11: 188

    15. [15]

      [黄令, 林克发, 杨防祖, 许书楷, 周绍民. 电化学, 2005, 11: 188]

    16. [16]

      11 Zucchi, F.; Grassi, V.; Frignani, A.; Trabanelli, G.; Monticelli, C. Mater. Chem. Phys., 2007, 103: 340

    17. [17]

      12 Liu, L.; Hu, J. M.; Zhang, J. Q.; Cao, C. N. J. Chin. Soc. Corros. Prot., 2006, 26: 59

    18. [18]

      [刘倞, 胡吉明, 张鉴清, 曹楚南. 中国腐蚀与防护学报, 2006, 26: 59]

    19. [19]

      13 Van Ooij,W. J.; Zhu, D. Q.; Stacy, M.; Seth,A.; Mugada,T.; Gandhi, J.; Puomi, P. Tsinghua Science and Technology, 2005, 10: 639

    20. [20]

      14 Osterholtz, F. D.; Pohl, E. R. J. Adhesion Sci. Technol., 1992, 6: 127

    21. [21]

      15 Cabral, A.; Duarte, R. G.; Montemor, M. F.; Zheludkevich, M. L.; Ferreira, M. G. S. Corros. Sci., 2005, 47: 869

    22. [22]

      16 Laibinis, P. E.; Bain, C. D.; Whitesides, G. M. J. Phys. Chem., 1991, 95: 7017

    23. [23]

      17 Zucchi, F.; Grassi, V.; Frignani, A.; Trabanelli, G. Corrosion Sci., 2004, 46: 2853

    24. [24]

      18 Zucchi, F.; Frignani, A.; Grassi, V.; Trabanelli, G.; DalColle, M. Corrosion Sci., 2007, 49: 1570

    25. [25]

      19 Sinapi, F.; Lejeune, I.; Delhalle, J.; Mekhalif, Z. Electrochim. Acta, 2007, 52: 5182

    26. [26]

      20 Sinapi, F.; Julien, S.; Auguste, D.; Hevesi, L.; Delhalle, J.; ekhalif, Z. Electrochim. Acta, 2008, 53: 4228

    27. [27]

      21 Chen, M. A.; Xie, X.; Qi, H. Y.; Zang, X. M.; Li, H. Z.; Yang, X. Acta Phys. -Chim. Sin., 2006, 22: 1025

    28. [28]

      [陈明安, 谢玄, 戚海英, 张新明, 李慧中, 杨汐. 物理化学学报, 2006, 22: 1025]

    29. [29]

      22 Zhu, D. Q.;Van Ooij,W. J. J. Adhesion Sci. Technol., 2002, 16: 1235

    30. [30]

      23 Chen, M. A.; Xie, X.; Zhang, X. M. Prog. Org. Coat., 2009, 66: 40

    31. [31]

      24 Wang, C. T. Study of self-assembled films on copper surface for orrosion inhibition

    32. [32]

      [D]. Jinan: Shandong University, 2003 王春涛. 铜表面组装缓蚀功能有序分子膜的研究

    33. [33]

      [D]. 济南: 刘东大学, 2003]

    34. [34]

      25 Quan, Z. L.; Chen, S. H.; Li, Y.; Cui, X. G. Corrosion Sci., 2002, 44: 703

    35. [35]

      26 Cao, C. N. Principles of electrochemistry of corrosion. 3rd ed. eijing: Chemical Industry Press, 2008: 175-186

    36. [36]

      [曹楚南. 腐蚀电化学原理. 第三版. 北京: 化学工业出版社, 2008: 175-186]


  • 加载中
    1. [1]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    2. [2]

      Yong Zhou Jia Guo Yun Xiong Luying He Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109

    3. [3]

      Shuyong Zhang Shu'e Song . Ideological and Political Case Design of Experiment of Corrosion and Protection Linking with National Major Projects. University Chemistry, 2024, 39(2): 57-60. doi: 10.3866/PKU.DXHX202304078

    4. [4]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    5. [5]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    6. [6]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    7. [7]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    8. [8]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    9. [9]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    10. [10]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    11. [11]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    12. [12]

      Jingyi Chen Fu Liu Tiejun Zhu Kui Cheng . Practice of Integrating Ideological and Political Education into Raman Spectroscopy Analysis Experiment Course. University Chemistry, 2024, 39(2): 140-146. doi: 10.3866/PKU.DXHX202310111

    13. [13]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    14. [14]

      Tianlong Zhang Jiajun Zhou Hongsheng Tang Xiaohui Ning Yan Li Hua Li . Virtual Simulation Experiment for Laser-Induced Breakdown Spectroscopy (LIBS) Analysis. University Chemistry, 2024, 39(6): 295-302. doi: 10.3866/PKU.DXHX202312049

    15. [15]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    16. [16]

      Zhaoyue Lü Zhehao Chen Yi Ni Duanbin Luo Xianfeng Hong . Multi-Level Teaching Design and Practice Exploration of Raman Spectroscopy Experiment. University Chemistry, 2024, 39(11): 304-312. doi: 10.12461/PKU.DXHX202402047

    17. [17]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    18. [18]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    19. [19]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    20. [20]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

Metrics
  • PDF Downloads(1412)
  • Abstract views(3084)
  • HTML views(59)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return