Citation: WANG Wan-Xia, HE Yun-Fei, SHANG Ya-Zhuo, LIU Hong-Lai. Interaction between the Gemini Surfactant (12-6-12) and DNA[J]. Acta Physico-Chimica Sinica, ;2011, 27(01): 156-162. doi: 10.3866/PKU.WHXB20110120 shu

Interaction between the Gemini Surfactant (12-6-12) and DNA

  • Received Date: 9 August 2010
    Available Online: 3 December 2010

    Fund Project: 国家自然科学基金(20706013, 20736002) (20706013, 20736002) 长江学者创新团队(IRT0721) (IRT0721) 111 引智计划(B08021) (B08021)

  • Interactions between DNA and the cationic gemini surfactant hexamethylene-1,3-bis(dodecydimethylammonium bromide) (12-6-12) in an aqueous solution were investigated using UV-Vis spectroscopy, zeta potential, fluorescence emission spectroscopy, dynamic light scattering, and agarose gel electrophoresis. It could be found that interactions between DNA and the cationic gemini surfactant were stronger than interactions between DNA and traditional surfactant due to the special structure of gemini surfactant. The cationic gemini surfactant can interact with DNA at very low concentrations and micellelike structures form around the DNA chains. The micelle-like structure of 12-6-12 that is induced by DNA appears at the critical aggregation concentration (CAC). The CAC is two orders of magnitude lower than the critical micelle concentration (CMC) of 12-6-12 in a DNA-free solution. The CAC is independent of DNA concentration but it is dependent on the hydrophobic interaction between surfactant molecules and the electrostatic attractive interaction between the surfactant and DNA. Zeta potential and gel electrophoresis show that the negative charges of DNA are neutralized effectively and the zeta potential of the complex changes from negative to positive values. Atomic force microscopy (AFM) images show loose structures, beadlike structures (nucleosomes), and globe structures. Circular dichroism (CD) spectra show that the secondary structure conformation of DNA changes because of its interaction with 12-6-12.

  • 加载中
    1. [1]

      1. Pagano, J. S.; McCutchan, J. H.; Vaheri, A. J. Virol., 1967, 1(5): 891

    2. [2]

      2. McCutchan, J. H.; Pagano, J. S. J. Natl. Cancer Inst., 1968, 41(2): 351

    3. [3]

      3. Kawai, S.; Nishizawa, M. Mol. Cell. Biol., 1984, 4(6): 1172

    4. [4]

      4. Miguel, M. G.; Pais, A. A. C. C.; Dias, R. S.; Leal, C.; Rosa, M.; Lindman, B. Colloids Surf. A, 2003, 228: 43

    5. [5]

      5. Dias, R. S. ; Pais, A. A. C. C.; Miguel, M. G.; Lindman, B. Colloids Surf. A, 2004, 250: 1157

    6. [6]

      6. Dias, R.; Innerlohinger, J.; Glatter, O.; Miguel, M. G.; Lindman, B. J. Phys. Chem. B, 2005, 109(20): 10458

    7. [7]

      7. Dias, R. S.; Lindman, B.; Miguel, M. G. J. Phys. Chem. B, 2002, 106: 12608

    8. [8]

      8. Wang, X. Y.;Wang, J. B.;Wang, Y. L.; Yan, H. K. Langmuir, 2004, 20: 9014

    9. [9]

      9. Jiang, N.; Li, P. X.;Wang, Y. L.;Wang, J. B.; Yan, H. K.; Thomas, R. K. J. Phys. Chem. B, 2004, 108: 15385

    10. [10]

      10. Li, Y. J.;Wang, X. Y.;Wang, Y. L. J. Phys. Chem. B, 2006, 110: 8499

    11. [11]

      11. Wang, X. L.; Zhang, X. H.; Cao, M.W.; Zheng, H. Z.; Xiao, B.; Wang, Y. L.; Li, M. J. Phys. Chem. B, 2009, 113: 2328

    12. [12]

      12. Deng, M. L.; Cao, M.W.;Wang, Y. L. J. Phy. Chem. B, 2009, 112: 9436

    13. [13]

      13. Dias, R. S.; Nikov, M.; Lindman, B.; Miguel, M. G. Langmuir, 2000, 16: 9577

    14. [14]

      14. Zhao, X. F.; He, Y. F.; Shang, Y. Z.; Han, X.; Liu, H. L. Acta Phys. -Chim. Sin., 2009, 25(5): 853

    15. [15]

      [赵小芳, 何云飞, 尚亚卓, 韩霞, 刘洪来.物理化学学报, 2009, 25(5): 853]

    16. [16]

      15. Alami, E.; Beinert, G.; Marie, P.; Zana, R. Langmuir, 1993, 9(6): 1465

    17. [17]

      16. Zana, R. Colloid Interf. Sci., 1996, 1(5): 566

    18. [18]

      17. Menger, F. M.; Keiper, J. S. Angew. Chem. Int. Edit., 2000, 39: 1906

    19. [19]

      18. Chen, Q. B.;Wei, G. H.; Shi, Y. H.; Liu, H. L.; Hu, Y. J. East. China. Uni. Sci. Technol., 2003, 29(1): 33

    20. [20]

      [陈启斌, 韦园红, 施云海, 刘洪来, 胡英. 华东理工大学学报, 2003, 29(1):33]

    21. [21]

      19. Uhrikova, D.; Zajac, I.; Dubnickova, M.; Pisarcik, M.; Funari, S. S.; Rapp, G.; Balgavy, P. Colloids Surf. B, 2005, 42(1): 59

    22. [22]

      20. Karlsson, L.; Van Eijk, M. C. P.; Soderman, O. J. Colloid Interface Sci., 2002, 252(2): 290

    23. [23]

      21. Hashidzume, A.; Mizusaki, M.; Yoda, K,; Morishima, Y. Langmuir, 1999, 15: 4276

    24. [24]

      22. Hansson, P.; Almgren, M. J. Phys. Chem., 1995, 99: 16694

    25. [25]

      23. Eastman, S. J.; Siegel, C.; Tousignant, J.; Smith, A. E.; Cheng, S. H.; Scheule, R. K. Biomembranes, 1997, 1325(1): 41

    26. [26]

      24. Liu, X.; Yang, J.W.; Miller, A. D.; Nack, E. A.; Lynn, D. M. Macromolecules, 2005, 38: 7907

    27. [27]

      25. Jadhav, V.; Maiti, S.; Dasgupta, A.; Das, P. K.; S, R.; G, M.; Lindman, M. Biomacromolecules, 2008, 9(7): 1852

    28. [28]

      26. Ding, Y. H.; Zhang, L.; Xie, J.; Guo, R. J. Phys. Chem. B, 2010, 114(5): 2033

    29. [29]

      27. Du, D. Y.; Huang, X. H.; Xu, F.; Xing,W.; Lu, T. H. Acta Phys. -Chim. Sin., 2003, 19(11): 1064

    30. [30]

      [杜江燕, 黄晓华, 许飞, 邢巍, 路天虹. 物理化学学报, 2003, 19(11): 1064]

    31. [31]

      28. Bombelli, C.; Borocci, S.; Diociaiuti, M; Faggioli, F.; Galantini, L; Luciani, P.; Mancini, G.; Sacco, M. G. Langmuir, 2005, 21(23): 10271

    32. [32]

      29. Bombelli, C.; Faggioli, F.; Luciani, P.; Mancini, G.; Sacco, M. G. J. Med. Chem., 2005, 48(16): 5378

    33. [33]

      30. Nakanishi, H.; Tsuchiya, K.; Okubo, T.; Sakai, H.; Abe, M. Langmuir, 2007, 23(2): 345


  • 加载中
    1. [1]

      Xiaofen GUANYating LIUJia LIYiwen HUHaiyuan DINGYuanjing SHIZhiqiang WANGWenmin WANG . Synthesis, crystal structure, and DNA-binding of binuclear lanthanide complexes based on a multidentate Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2486-2496. doi: 10.11862/CJIC.20240122

    2. [2]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    3. [3]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    4. [4]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    5. [5]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    6. [6]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    7. [7]

      Chang LiuTao WuLijiao DengXuzi LiXin FuShuzhen LiaoWenjie MaGuoqiang ZouHai Yang . Programmed DNA walkers for biosensors. Chinese Chemical Letters, 2024, 35(9): 109307-. doi: 10.1016/j.cclet.2023.109307

    8. [8]

      Jia-Li XieTian-Jin XieYu-Jie LuoKai MaoCheng-Zhi HuangYuan-Fang LiShu-Jun Zhen . Octopus-like DNA nanostructure coupled with graphene oxide enhanced fluorescence anisotropy for hepatitis B virus DNA detection. Chinese Chemical Letters, 2024, 35(6): 109137-. doi: 10.1016/j.cclet.2023.109137

    9. [9]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    10. [10]

      Xiaohong WenMei YangLie LiMingmin HuangWei CuiSuping LiHaiyan ChenChen LiQiuping Guo . Enzymatically controlled DNA tetrahedron nanoprobes for specific imaging of ATP in tumor. Chinese Chemical Letters, 2024, 35(8): 109291-. doi: 10.1016/j.cclet.2023.109291

    11. [11]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    12. [12]

      Zhongyu WangLijun WangHuaixin Zhao . DNA-based nanosystems to generate reactive oxygen species for nanomedicine. Chinese Chemical Letters, 2024, 35(11): 109637-. doi: 10.1016/j.cclet.2024.109637

    13. [13]

      Jiangshan XuWeifei ZhangZhengwen CaiYong LiLong BaiShaojingya GaoQiang SunYunfeng Lin . Tetrahedron DNA nanostructure/iron-based nanomaterials for combined tumor therapy. Chinese Chemical Letters, 2024, 35(11): 109620-. doi: 10.1016/j.cclet.2024.109620

    14. [14]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    15. [15]

      Tian FengYun-Ling GaoDi HuKe-Yu YuanShu-Yi GuYao-Hua GuSi-Yu YuJun XiongYu-Qi FengJie WangBi-Feng Yuan . Chronic sleep deprivation induces alterations in DNA and RNA modifications by liquid chromatography-mass spectrometry analysis. Chinese Chemical Letters, 2024, 35(8): 109259-. doi: 10.1016/j.cclet.2023.109259

    16. [16]

      Zhe-Han YangJie YinLei XinYuanfang LiYijie HuangRuo YuanYing Zhuo . Research advancement of DNA-based intelligent hydrogels: Manufacture, characteristics, application of disease diagnosis and treatment. Chinese Chemical Letters, 2024, 35(10): 109558-. doi: 10.1016/j.cclet.2024.109558

    17. [17]

      Yanfei LiuYaqin HuYifu TanQiwen ChenZhenbao Liu . Tumor acidic microenvironment activatable DNA nanostructure for precise cancer cell targeting and inhibition. Chinese Chemical Letters, 2025, 36(1): 110289-. doi: 10.1016/j.cclet.2024.110289

    18. [18]

      Fanghua ZhangYuyan LiHongyan ZhangWendong LiuZhe HaoMingzheng ShaoRuizhong ZhangXiyan LiLibing Zhang . Logically integrating exo/endogenous gated DNA trackers for precise microRNA imaging via synergistic manipulation. Chinese Chemical Letters, 2025, 36(1): 109848-. doi: 10.1016/j.cclet.2024.109848

    19. [19]

      Kun LiuYulin CongXiongfeng LuoMeicun YaoZhiyong XieHao Li . Utilizing bivalent aptamers as first DNA agonist to activate RTKs heterodimer of different families. Chinese Chemical Letters, 2025, 36(1): 109839-. doi: 10.1016/j.cclet.2024.109839

    20. [20]

      Yao HUANGYingshu WUZhichun BAOYue HUANGShangfeng TANGRuixue LIUYancheng LIUHong LIANG . Copper complexes of anthrahydrazone bearing pyridyl side chain: Synthesis, crystal structure, anticancer activity, and DNA binding. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 213-224. doi: 10.11862/CJIC.20240359

Metrics
  • PDF Downloads(1589)
  • Abstract views(2820)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return