Citation:
WANG Bin, DU Min, ZHANG Jing. Inhibition Performance of an Imidazoline Derivative as a Gas-Liquid Two-Phase Inhibitor for Q235 Steel against CO2 Corrosion[J]. Acta Physico-Chimica Sinica,
;2011, 27(01): 120-126.
doi:
10.3866/PKU.WHXB20110117
-
We investigated the inhibition performance of a new imidazoline derivative inhibitor, TAI, which can be used as a gas-liquid two-phase inhibitor against CO2 corrosion by weight-loss method, electrochemical impedance spectroscopy (EIS), Fourier-transform infrared (FT-IR) spectroscopy, atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). Results revealed that the thioureido imidazoline inhibitor was an effective inhibitor against CO2 corrosion in gas and liquid two phases. Surface analysis by AFM showed that damage to the metallic surface was considerably reduced in the presence of the TAI inhibitor. A bigger adhesive force between the AFM probe and the steel surface was detected owing to hydrophobic interaction from the inhibitors in the two phases. The long range-repulsive force between the AFM probe and the steel surface increased in gas phase but decreased in liquid phase by the screening effect of surface charges. XPS and FT-IR spectroscopy proved that the adsorption films on the metal surfaces with protective properties of TAI and acid hydrolysis products of the TAI (amides) were present in liquid phase and in gas phase, respectively. The above results further confirmed the hydrolysis mechanism of imidazoline derivatives in acid solution.
-
-
-
[1]
1. Nesic, S.; Pots, B. F. M.; Postlethwaite, J.; Thevenot, N. J. Corr.Sci. Eng., 1996, 1: 3
-
[2]
2. Lopez, D. A.; Schreiner,W. H.; De Sanchez, S. R.; Simison, S. N.Appl. Surf. Sci., 2004, 236: 77
-
[3]
3. Zhang, X. Y.;Wang, F. P.; He, Y. F.; Du, Y. L. Corrosion Sci.,2001, 43: 1418
-
[4]
4. Nesic, S.; Nordsveen, M.; Maxwell, N.; Vrhovac, M. Corrosion Sci., 2001, 43: 1373
-
[5]
5. Amri, J.; Gulbrandsen, E.; Nogueira, R. P. Electrochem. Commun., 2008, 10: 200
-
[6]
6. Durnie,W. H.; Kinsella, B. J.; De Marco, R.; Jefferson, A. J. Appl. Electrochem., 2001, 31: 1221
-
[7]
7. Liu, X.; Okafor, P. C.; Zheng, Y. G. Corrosion Sci., 2009, 51: 744
-
[8]
8. Liu, F. G.; Du, M.; Zhang, J.; Qiu, M. Acta Phys. -Chim. Sin., 2008, 24: 138.
-
[9]
[刘福国, 杜敏, 张静, 仇萌. 物理化学学报, 2008, 24: 138. ]
-
[10]
9. Song, F. M.; Kirk, D.W.; Graydon, J.W.; Cormack, D. E. Corrosion, 2004, 60: 736
-
[11]
10. Ramachandran, S.; Jovancicevic, V. Corrosion, 1999, 55: 259
-
[12]
11. Edwards, A.; Osborne, C.;Webster, S.; Klenerman, D.; Joseph, M.; Ostovar, P.; Doyle, M. Corrosion Sci., 1994, 36: 315
-
[13]
12. Jovancicevic, V.; Ramachandran, S.; Prince, P. Corrosion, 1999, 55: 449
-
[14]
13. Tan, Y. J.; Bailey, S.; Kinsella, B. Corrosion Sci.,1996, 38: 1545
-
[15]
14. Durnie,W.; De Marco, R.; Jefferson, A.; Kinsella, B. J. Electrochem. Soc., 1999, 146: 1751
-
[16]
15. Popova, A.; Christor, M.; Raicheva, S.; Sokolova, E. Corrosion Sci., 2004, 46: 1333
-
[17]
16. Okafor, P. C.; Zheng, Y. G. Corrosion Sci.,2009, 51: 850
-
[18]
17. ASTM E 200-01, Standard practice for preparation, standardization and storage of standard and reagent solutions for chemical analysis, ASTM book of standards. Vol. 15.02.West Conshohocken, PA, 2001
-
[19]
18. ASTM G 01-03, Standard practice for preparing, cleaning and evaluating corrosion test specimens, ASTM book of standards. Vol.3.02.West Conshohocken, PA, 2003
-
[20]
19. ASTM G 31-72, Standard practice for laboratory immersion corrosion testing of metals, ASTM Book of Standards. Vol.3.02. West Conshohocken, PA, 2004
-
[21]
20. Liu, F. G.; Du, M.; Zhang, J.; Qiu, M. Corrosion Sci., 2009, 51: 102
-
[22]
21. Lopez, D. A.; Simison, S. N.; De Sanchez, S. R. Corrosion Sci.,2005, 47: 735
-
[23]
22. Khaled, K. F.; Hackerman, N. Electrochim. Acta, 2003, 48: 2715
-
[24]
23. Moretti, G.; Guidi, F.; Grion, G. Corrosion Sci., 2004, 46: 387
-
[25]
24. McCafferty, E.; Hackerman, N. J. Electrochem. Soc., 1972, 119:146
-
[26]
25. Muralidharan, S.; Phani, K. L. N.; Pitchumani, S.; Ravichandran, S.; Lyer, S. V. K. J. Electrochem. Soc., 1995, 142: 1478
-
[27]
26. Limatibul, S.;Watson, J.W. J. Org. Chem., 1971, 36: 3803
-
[28]
27. Reese, S. R.; Fox, M. A. J. Phys. Chem. B, 1998, 102: 9820
-
[29]
28. Jakubowicz, A.; Jia, H.;Wallace, R. M.; Gnade, B. E. Langmuir,2005, 21: 950
-
[30]
29. Liu, X. Y.; Chen, S. H.; Ma, H. Y.; Liu, G. Z.; Shen, L. X. Appl.Surf. Sci., 2006, 253: 814
-
[31]
30. Wang, D. X.; Li, S. Y.; Yu, Y. Corrosion Sci., 1999, 41: 735
-
[32]
31. Olivares-Xometl, O.; Likhanova, N. V.; Dominguez-Aguilar, M.A.; Hallen, J. M.; Zamudio, L. S.; Arce, E. Appl. Surf. Sci., 2006,252: 2139
-
[33]
32. Weisenhorn, A. L.; Hansma, P. K. Appl. Phys. Lett., 1989, 54:2651
-
[34]
33. Ai, J. Z.; Guo, X. P.; Qu, J. E.; Chen, Z. Y.; Zheng, J. S. Colloid Surf. A-Physicochem. Eng. Asp., 2006, 281: 147
-
[35]
34. Tsao, Y. H.; Evans, D. F.;Wennerstrom, H. Science, 1993, 262:547
-
[36]
35. Liu, X. Y.; Chen, S. H.; Zhai, H. Y.; Shen, L. X.; Zhou, J. J.;Wu,L. Electrochem. Commun., 2007, 9: 813
-
[37]
36. Auger and X-ray photoelectron spectroscopy, Vol.1.//Practical surface analysis. 2nd ed. Briggs, D.; Seah, M. P. Eds. Chichester, England: JohnWiley & Sons, 1990
-
[38]
37. Moulder, F.; Stickle,W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray photoelectron spectroscopy. Chaitain, J. Ed. Minnesota, USA: Perkin-Elmer Corp., 1992
-
[39]
38. NIST X-Ray photoelectron spectroscopy database, NIST standard reference database 20. Vol.1. Gaithersburg, USA, 1989
-
[40]
39. Sastri, V. S.; Elboujdaini, M.; Roma, J. R.; Perumareddi, J. R. Corrosion, 1996, 52: 447
-
[41]
40. Zhang, D. Q.; Gao, L. X.; Zhou, G. D. J. Appl. Electrochem., 2003, 33: 361
-
[42]
41. Zhang, D. Q.; Gao, L. X.; Zhou, G. D. Surf. Coat. Technol., 2010, 204: 1646
-
[1]
-
-
-
[1]
Chongjing Liu , Yujian Xia , Pengjun Zhang , Shiqiang Wei , Dengfeng Cao , Beibei Sheng , Yongheng Chu , Shuangming Chen , Li Song , Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036
-
[2]
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
-
[3]
Yikai Wang , Xiaolin Jiang , Haoming Song , Nan Wei , Yifan Wang , Xinjun Xu , Cuihong Li , Hao Lu , Yahui Liu , Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007
-
[4]
Jizhou Liu , Chenbin Ai , Chenrui Hu , Bei Cheng , Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006
-
[5]
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
-
[6]
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
-
[7]
Yukun Chang , Haoqin Huang , Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095
-
[8]
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
-
[9]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
-
[10]
Hong Dong , Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307
-
[11]
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
-
[12]
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
-
[13]
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
-
[14]
Ran Yu , Chen Hu , Ruili Guo , Ruonan Liu , Lixing Xia , Cenyu Yang , Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032
-
[15]
Linlu Bai , Wensen Li , Xiaoyu Chu , Haochun Yin , Yang Qu , Ekaterina Kozlova , Zhao-Di Yang , Liqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931
-
[16]
Shu-Ran Xu , Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173
-
[17]
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
-
[18]
Yufei Jia , Fei Li , Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255
-
[19]
Ziruo Zhou , Wenyu Guo , Tingyu Yang , Dandan Zheng , Yuanxing Fang , Xiahui Lin , Yidong Hou , Guigang Zhang , Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245
-
[20]
Qin Cheng , Ming Huang , Qingqing Ye , Bangwei Deng , Fan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112
-
[1]
Metrics
- PDF Downloads(1169)
- Abstract views(2511)
- HTML views(32)