Citation: SUN Hao, JIANG Yong-Jun, YU Qing-Sen, GAO Hui. Molecular Dynamics Simulations on the Role of Structural Mg2+ Ions in Phosphoryl Transfer Catalyzed by GSK-3β[J]. Acta Physico-Chimica Sinica, ;2011, 27(01): 207-212. doi: 10.3866/PKU.WHXB20110116 shu

Molecular Dynamics Simulations on the Role of Structural Mg2+ Ions in Phosphoryl Transfer Catalyzed by GSK-3β

  • Received Date: 1 September 2010
    Available Online: 30 November 2010

    Fund Project: 国家高技术研究发展计划(863)(2007AA02Z301) (863)(2007AA02Z301) 国家自然科学基金(20803063) (20803063) 宁波市自然科学基金(2010A610024) (2010A610024)西南林业大学重点科研基金(110932)资助项目 (110932)

  • Glycogen synthase kinase-3β(GSK-3β) is a kind of serine/threonine protein kinase. It regulates the synthesis of glycogen and plays an important part in several signal pathways. It is believed to be an important target for a number of diseases such as diabetes, cancers, chronic inflammation, and Alzheimer's disease. Mg2+ ions are conserved structural metal ions in GSK-3β and they interact with adenosine-triphosphate (ATP). They are very important in phosphoryl transfer in the kinase. In this paper, the effect of two Mg2+ ions (Mg2+I, Mg2+II) on GSK-3β is illustrated. Mg2+ can stabilize the conformation of GSK-3β and ATP. Without Mg2+, the stabilization of GSK-3β reduces explicitly and the conformation of ATP changes. Mg2+I is important in the phosphorylation reaction while Mg2+II is essential and Lys183 alone cannot maintain the conformation of ATP without the assistance of Mg2+II . ATP forms intramolecular hydrogen bonds and adopts a folded conformation when both Mg2+I and Mg2+II are absent.

  • 加载中
    1. [1]

      1. Cheng, Y. H.; Zhang, Y. K.; McCammon, J. A. J. Am. Chem. Soc.,2005, 127: 1553

    2. [2]

      2. Embi, N.; Rylatt, D. B.; Cohen, P. Eur. J. Biochem., 1980, 107:519

    3. [3]

      3. Cross, D. A.; Alessi, D. R.; Cohen, P.; Andelkovich, M.;Hemmings, B. A. Nature, 1995, 378: 785

    4. [4]

      4. Hoeflich, K. P.; Luo, J.; Rubie, E. A.; Tsao, M. S.; Jin, O.;Woodgett, J. R. Nature, 2000, 406: 86

    5. [5]

      5. Sun, H.; Jiang, Y. J.; Yu, Q. S.; Zou, J.W. Acta Phys. -Chim. Sin.,2009, 25: 635.

    6. [6]

      [孙浩, 蒋勇军, 俞庆森, 邹建卫. 物理化学学报, 2009, 25: 635]

    7. [7]

      6. Zhang, N.; Jiang, Y. J.; Zou, J.W.; Zhuang, S. L.; Jin, H. X.; Yu,Q. S. Proteins, 2007, 67: 941

    8. [8]

      7. Zhang, N.; Jiang, Y. J.; Zou, J.W.; Zhang, B.;Wang, Y. H.; Yu, Q.S. Eur. J. Med. Chem., 2006, 41: 373

    9. [9]

      8. Martinez, A.; Castro, A.; Medina, M. Glycogen synthase kinase 3(gsk-3) and its inhibitors. New Jersey:Wiley>, 2006: 51-54

    10. [10]

      9. Fiol, C. J.;Wang, A.; Roeske, R.W.; Roach, P. J. J. Biol. Chem.,1990, 265: 6061

    11. [11]

      10. Jope, R. S.; Johnson, G. V. Trends Biochem. Sci., 2004, 29: 95

    12. [12]

      11. Summers, S. A.; Kao, A.W.; Kohn, A. D.; Backus, G. S.; Roth, A.; Pessin, J. E.; Birnbaum, M. J. J. Biol. Chem., 1999, 274: 17934

    13. [13]

      12. Ross, S. E.; Erickson, R. L.; Hemati, N.; MacDougald, O. A. Mol. Cell. Biol., 1999, 19: 8433

    14. [14]

      13. Wagman, A. S.; Johnson, K.W.; Bussiere, D. E.; Curr. Pharm. Des., 2004, 10: 1105

    15. [15]

      14. Martinez, A.; Castro, A.; Dorronsoro, I.; Alonso, M. Med. Res.Rev., 2002, 22: 373

    16. [16]

      15. Schafer, M.; odenough, S.; Moosmann, B.; Behl, C. Brain Res., 2004, 1005: 84

    17. [17]

      16. Phiel, C. J.;Wilson, C. A.; Lee, V. M.; Klein, P. S. Nature, 2003,423: 435

    18. [18]

      17. Hernandez, F.; Perez, M.; Lucas, J. J.; Mata, A. M.; Bhat, R.;Avila, J. J. Biol. Chem., 2004, 279: 3801

    19. [19]

      18. uld, T. D.; Zarate, C. A.; Manji, H. K. J. Clin. Psych., 2004,65: 10

    20. [20]

      19. Emamian, E. S.; Hall, D.; Birnbaum, M. J.; Karayior u, M.; s, J. A. Nat. Genet., 2004, 36: 131

    21. [21]

      20. Bhat, R. V.; Budd, H. S. L.; Avila, J. J. Neurochem., 2004, 89:1313

    22. [22]

      21. Ghosh, S.; Karin, M. Cell,, 2002, 109: 81

    23. [23]

      22. Peifer, M.; Polakis, P. Science, 2000, 287: 1606

    24. [24]

      23. Pap, M.; Cooper, G. M. J. Biol. Chem., 1998, 273: 19929

    25. [25]

      24. Diaz, N.; Suarez, D. Biochemistry, 2007, 46: 8943

    26. [26]

      25. Ryves,W. J.; Dajani, R.; Pearl, L.; Harwood, A. J. Biochem. Biophys. Res. Commun., 2002, 290: 967

    27. [27]

      26. Herberg, F.W.; Doyle, M. L.; Cox, S.; Taylor, S. S. Biochemistry,1999, 38: 6352

    28. [28]

      27. Valiev, M.; Kawai, R.; Adams, J. A.;Weare, J. H. J. Am. Chem.Soc., 2003, 125: 9926

    29. [29]

      28. Diaz, N.; Field, M. J. J. Am. Chem. Soc., 2004, 126: 529

    30. [30]

      29. Duan, Y.;Wu, C.; Chowdhury, S.; Lee, M. C.; Xiong, G.; Zhang, W.; Yang, R.; Cieplak, P.; Luo, R.; Lee, T. J. Comput. Chem.,2003, 24: 1999

    31. [31]

      30. Lee, M. C.; Duan, Y. Proteins, 2004, 55: 620

    32. [32]

      31. Wang, J.;Wolf, R. M.; Caldwell, J.W.; Kollamn, P. A.; Case, D.A. J. Comput. Chem., 2004, 25: 1157

    33. [33]

      32. Meagher, K. L.; Redman, L. T.; Carlson, H. A. J. Comput. Chem.,2003, 24: 1016

    34. [34]

      33. Jorgensen,W. L.; Chandrasekhar, J.; Madura, J.; Klein, M. L. J. Chem. Phys., 1983, 79: 926

    35. [35]

      34. Darden, T.; York, D.; Pedersen, L. J. Chem. Phys., 1993, 98:10089

    36. [36]

      35. Ryckaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. J. Comput. Phys.,1977, 23: 327

    37. [37]

      36. Adams, J. A.; Taylor, S. S. Biochemistry,1992, 31: 8516

    38. [38]

      37. Hao, S.; Jiang, Y. J.; Yu, Q. S.; Luo, C. C.; Zou, J.W. Biochem. Biophysi. Res. Commun.,2008, 377: 962

    39. [39]

      38. http://dx.doi.org/10.1007/s00894-010-0738-0

    40. [40]

      39. Hanks, S. K.; Quinn, A. M. Methods. Enzymol., 1991, 200: 38

    41. [41]

      40. Knighton, D. R.; Cadena, D. L.; Zheng, J. H.; Teneyck, L. F.; Taylor, S. S.; Sowadski, J. M.; Gill, G. N. Proc. Natl. Acad. Sci. U. S. A., 1993, 90: 5001

    42. [42]

      41. Gómez-Sintes, R.; Hernandez, F.; Avila, J.; tteland, J. P.; Zaratin, P.; Lucas, J. J. SENC. Rev. Neurol., 2005, 41: 71

    43. [43]

      42. Zhang, J.; Xu, Y. H.; Shen, J. H.; Luo, X. M.; Chen, J. G.; Chen, K. X.; Zhu,W. L.; Jiang, H. L. J. Am. Chem. Soc., 2005, 127:11709


  • 加载中
    1. [1]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    2. [2]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    3. [3]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    4. [4]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    5. [5]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    6. [6]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    7. [7]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    8. [8]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    11. [11]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    12. [12]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    13. [13]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    14. [14]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    15. [15]

      Gregorio F. Ortiz . Some facets of the Mg/Na3VCr0.5Fe0.5(PO4)3 battery. Chinese Chemical Letters, 2024, 35(10): 109391-. doi: 10.1016/j.cclet.2023.109391

    16. [16]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    17. [17]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    18. [18]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    19. [19]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    20. [20]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

Metrics
  • PDF Downloads(1297)
  • Abstract views(3396)
  • HTML views(84)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return