Citation: BAI Yan-Zhi, ZHAO Gao-Feng, SHEN Xue-Feng, SUN Jian-Min, WANG Yuan-Xu. Geometries, Electronic and Magnetic Properties of TbSin (n=2-13) Clusters[J]. Acta Physico-Chimica Sinica, ;2011, 27(01): 39-46. doi: 10.3866/PKU.WHXB20110114 shu

Geometries, Electronic and Magnetic Properties of TbSin (n=2-13) Clusters

  • Received Date: 20 August 2010
    Available Online: 26 November 2010

    Fund Project: 国家自然科学基金(10804027, 11011140321)资助项目 (10804027, 11011140321)

  • The geometries, stability, and electronic and magnetic properties of TbSin (n=2-13) clusters were systematically investigated using relativistic density functional theory (DFT) within the generalized gradient approximation. The average binding energies, dissociation energies, charge transfer, the highest occupied molecular orbital and the lowest unoccupied molecular orbital (HOMO-LUMO) gaps, Mulliken populations (MP), and magnetic properties were calculated and were discussed. The TbSin (n=2-13) clusters do not form encapsulated structures at n=10. We conclude that the stability of TbSin is consistent with the encapsulated geometric structure and also with the inherent electronic stabilization. Furthermore, results of the calculated Mulliken populations show that the charge always transfers from Tb to Si. The magnetic moment is largely located on Tb and is mainly populated by f-block electrons. The f electrons are very localized and to a large extent not responsible for chemical bonding. The partial density of states (PDOS) of TbSi10 shows that there is strong sp hybridization between Tb and Si.

  • 加载中
    1. [1]

      1. Xu, C.; Taylor, T. R.; Burton, G. R.; Neumark, D. M. J. Chem. Phys., 1998, 108: 1395

    2. [2]

      2. Rata, I.; Shvartsburg, A. A.; Horoi, M.; Frauenheim, T.; Siu, K. W. M.; Jackson, K. A. Phys. Rev. Lett., 2000, 85: 546

    3. [3]

      3. Blondel, C.; Delsart, C.; ldfarb, F. J. Phys. B, 2001, 34: L281

    4. [4]

      4. Zhao, C.; Balasubramanian, K. J. Chem. Phys., 2002, 116: 3690

    5. [5]

      5. Yoo, S.; Zeng, X. C. J. Chem. Phys., 2003, 119: 1442

    6. [6]

      6. Zhu, X.; Zeng, X. C. J. Chem. Phys., 2003, 118: 3558

    7. [7]

      7. Maroulis, G.; Begue, D.; Pouchan, C. J. Chem. Phys., 2003, 119: 794

    8. [8]

      8. Broyer, M.; Pellarin, M.; Baguenard, B.; Lerm, J.; Melinon, P.; Tuaillon, J.; Dupiuis,V.; Prevel, B.; Perez, A. Mater. Sci. Forum, 1996, 232: 27

    9. [9]

      9. Sporea, C.; Rabilloud, F.; Aubert-Frecon, M. J. Mol. Struct. - Theochem, 2007, 802: 85

    10. [10]

      10. Wei, S.; Barnett, R. N.; Landman, U. Phys. Rev. B, 1997, 55: 7935

    11. [11]

      11. Singh, A. K.; Kumar, V.; Brieve, T. M.; Kawazoe, Y. Nano Lett., 2002, 2: 1243

    12. [12]

      12. Huda, M. N.; Ray, A. K. Phys. Rev. A, 2004, 69: 011201

    13. [13]

      13. Majumder, C.; Kulshreshtha, S. K. Phys. Rev. B, 2004, 70: 245426

    14. [14]

      14. Jungnickel, G.; Frauenheim, T.; Jackson, K. A. J. Chem. Phys., 2000, 112: 1295

    15. [15]

      15. Belomoin, G.; Therrien, J.; Smith, A.; Rao, S.; Twesten, R.; Chaieb, S.; Nayfeh, M. H.;Wagner, L.; Mitas, L. Appl. Phys. Lett., 2002, 80: 841

    16. [16]

      16. Kumar, V.; Kawazoe,Y. Phys. Rev. Lett., 2003, 90: 055502

    17. [17]

      17. Hiura, H.; Miyazaki, T.; Kanayama, T. Phys. Rev. Lett., 2001, 86: 1733

    18. [18]

      18. Beck, S. B. J. Chem. Phys., 1989, 90: 6306

    19. [19]

      19. Koyasu, K.; Akutsu, M.; Mitsui, M.; Nakajima, A. J. Am. Chem. Soc., 2005, 127: 4998

    20. [20]

      20. Grubisic, A.;Wang, H. P.; Ko, Y. J.; Bowen, K. H. J. Chem. Phys., 2008, 129: 054302

    21. [21]

      21. Ohara, M.; Miyajima, K.; Pramann, A.; Nakajima, A.; Kaya, K. J. Phys. Chem. A, 2002, 106: 3702

    22. [22]

      22. Zhao, G. F.; Sun, J. M.; Gu, Y. Z.;Wang, Y. X. J. Chem. Phys., 2009, 131: 114312

    23. [23]

      23. Cao, T. T.; Zhao, L. X.; Feng, X. J.; Lei, Y. M.; Luo, Y. H. J. Mol. Struct. -Theochem, 2009, 895: 148

    24. [24]

      24. Turski, T. P. Chem. Phys. Lett., 1999, 315: 115

    25. [25]

      25. Ren, Z. Y.; Li, F.; Guo, P.; Han, J. G. J. Mol. Struct. -Theochem, 2005, 718: 165

    26. [26]

      26. Ma, L. J.; Zhao, J. J.;Wang, G.;Wang, B. L.; Lu, L. Q.;Wang, G. H. Phys. Rev. B, 2006, 73: 125439

    27. [27]

      27. Wang, J.; Han, J. G. J. Chem. Phys., 2005, 123: 064306

    28. [28]

      28. Khanna, S. N.; Rao, B. K.; Jena, P. Phys. Rev. Lett., 2002, 89: 016803

    29. [29]

      29. Khanna, S. N.; Rao, B. K.; Jena, P.; Nayak, S. K. Chem. Phys. Lett., 2003, 373: 433

    30. [30]

      30. Lu, Z. Y.;Wang, C. Z.; Ho, K. M. Phys. Rev. B, 2000, 61: 2329

    31. [31]

      31. Wang, J. L.;Wang, G. H.; Zhao, J. J. Phys. Rev. B, 2001, 64: 205411

    32. [32]

      32. Dolg, M.;Wedig, U.; Stoll, H.; Preuss, H. J. Chem. Phys., 1987, 86: 866

    33. [33]

      33. Zhao, R. N.; Ren, Z. Y.; Guo, P.; Bai, J. T.; Zhang, C. H.; Han, J. G. J. Phys. Chem. A, 2006, 110: 4071

    34. [34]

      34. Mulliken, R. S. J. Chem. Phys., 1955, 23: 1841

    35. [35]

      35. Ho, K. M.; Shvartsburg, A. A.; Pan, B. C.; Lu, Z. Y.;Wang, C. Z.;Wacker, J. G.; Fye, J. L.; Jarrold, M. F. Nature, 1998, 392: 582

    36. [36]

      36. Guo, L. J.; Zhao, G. F.; Gu, Y. Z.; Liu, X.; Zeng, Z. Phys. Rev. B, 2008, 77: 195417

    37. [37]

      37. Marim, L. M.; Lemes, M. R.; Dal Pino Jr., A. Phys. Rev. A, 2003, 67: 033203

    38. [38]

      38. Shvartsburg, A. A.; Liu, B.; Jarrold, M. F.; Ho, K. M. J. Chem. Phys., 2000, 112: 4517

    39. [39]

      39. Yang, J. C.; Xu,W. G.; Xiao,W. S. J. Mol. Struct. -Theochem, 2005, 719: 89

    40. [40]

      40. Koyasu, K.; Atobe, J.; Nakajima, S. Furuse, A. J. Chem. Phys., 2008, 129: 214301

    41. [41]

      41. Ohara, M.; Koyasu, K.; Nakajima, A.; Kaya, K. Chem. Phys. Lett., 2003, 371: 490

    42. [42]

      42. Grubisic, A.; Ko, Y. J.;Wang, H.; Bowen, K. H. J. Am. Chem. Soc., 2006, 131: 10783

    43. [43]

      43. Ohara, M.; Miyajima, K.; Pramann, A.; Nakajima, A.; Kaya, K. J. Phys. Chem. A, 2007, 111: 10884

    44. [44]

      44. Chuang, F. C.; Hsieh, Y. Y.; Hsu, C. C.; Albao, M. A. J. Chem. Phys., 2007, 127: 144313

    45. [45]

      45. Majumder, C.; Kulshreshtha, S. K. Phys. Rev. B, 2004, 69: 115432

    46. [46]

      46. Ma, L.; Zhao, J.;Wang, J. G.; Lu, Q. L.; Zhu, L. Z.;Wang, G. H. Chem. Phys. Lett., 2005, 411: 279

    47. [47]

      47. Xiao, C. Y.; Hagelberg, F. Phys. Rev. B, 2002, 66: 075425

    48. [48]

      48. Guo, P.; Ren, Z. Y.;Wang, F.; Bian, J.; Han, J. G.;Wang, G. H. J. Chem. Phys., 2004, 121: 12265


  • 加载中
    1. [1]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    2. [2]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    3. [3]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    4. [4]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    5. [5]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    6. [6]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    7. [7]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    8. [8]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    9. [9]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    10. [10]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    11. [11]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    12. [12]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    13. [13]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    14. [14]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    15. [15]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    16. [16]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    17. [17]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    18. [18]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    19. [19]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    20. [20]

      Hua Hou Baoshan Wang . Course Ideology and Politics Education in Theoretical and Computational Chemistry. University Chemistry, 2024, 39(2): 307-313. doi: 10.3866/PKU.DXHX202309045

Metrics
  • PDF Downloads(1417)
  • Abstract views(3250)
  • HTML views(21)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return