Citation: CUI Wen-Yu, AN Mao-Zhong, YANG Pei-Xia, ZHANG Jin-Qiu. Cathodic and Thermal Stabilities of the P(VdF-HFP)-Based Ionic Liquid Composite Polymer Electrolyte[J]. Acta Physico-Chimica Sinica, ;2011, 27(01): 78-84. doi: 10.3866/PKU.WHXB20110112 shu

Cathodic and Thermal Stabilities of the P(VdF-HFP)-Based Ionic Liquid Composite Polymer Electrolyte

  • Received Date: 20 September 2010
    Available Online: 25 November 2010

    Fund Project: 黑龙江省自然科学基金(B2007-05)资助项目 (B2007-05)

  • We report on a composite polymer electrolyte containing the ionic liquid 1-ethyl-3- methylimidazolium hexafluorophosphate (EMIPF6). This composite polymer electrolyte is based on the poly(vinylidene fluoride-co-hexafluoropropylene) (P(VdF-HFP)) polymer matrix and is a potential electrolyte for use in lithium ion batteries. The ionic conductivity of the composite polymer electrolyte was measured by electrochemical impedance spectroscopy (EIS). Linear sweep voltammetry (LSV) was performed to investigate the electrochemical stability window of the polymer electrolyte. The thermal properties for the composite polymer electrolyte were also characterized by thermogravimetry (TG) and by a flammability test. The results show that the presence of the EMIPF6 ionic liquid increases the ion transport properties greatly but a better cathodic stability is only obtained by the addition of organic additives such as ethylene carbonate-propylene carbonate (EC-PC), which extends the cathodic stability to 0.3 V. This corresponds to an electrochemical stability window of 0.3-4.3 V. The selected Li4Ti5O12 anode and LiCoO2 cathode materials exhibit acceptable electrochemical performance in combination with the prepared P(VdF-HFP)/ LiPF6/EMIPF6/EC-PC composite polymer electrolyte. At a charge-discharge rate of 0.1C, Li/LiCoO2 and Li/ Li4Ti5O12 have reversible capacities of 130 and 144 mAh·g-1, respectively. However, the corresponding thermal performance is suppressed because of the presence of organic additives.

  • 加载中
    1. [1]

      1. Sung, M. G.; Hattori, K.; Asai, S. Materials and Design, 2009, 30: 387

    2. [2]

      2. Song, J. Y.;Wang, Y. Y.;Wan, C. C. J. Power Sources, 1999, 7: 183

    3. [3]

      3. Alper, J. Science, 2002, 296: 1224

    4. [4]

      4. Scrosati, B.; Croce, F.; Persi, L. J. Electrochem. Soc., 2000, 147: 1. 718

    5. [5]

      5. Croce, F.; Appetecchi, G. B.; Persi, L.; Scrosati, B. Nature, 1998: 456

    6. [6]

      6. Croce, F.; Curini, R.; Martinelli, A.; Persi, L.; Ronci, F.; Scrosati, B.; Caminiti, R. J. Phys. Chem. B, 1999, 103: 10632

    7. [7]

      7. Wieczoreck,W.; Lipka, P.; Zukowska, G.;Wycislik, H. J. Phys. Chem., 1998, 102: 6968

    8. [8]

      8. Saito, Y.; Stephan, M.; Kataoka, H. Solid State Ionics, 2003, 16: 149

    9. [9]

      9. Forsyth, M.; Meakin, P. M.; MacFarlane, D. R. Electrochim. Acta, 1995, 40: 2339

    10. [10]

      10. Adebahr, J.; Forsyth, M.; MacFarlane, D. R.; Gavelin, P.; Jacobsson, P. Solid State Ionics, 2002, 14: 303

    11. [11]

      11. Noda, A.; Hayamizu, K.;Watanabe, M. J. Phys. Chem. B, 2001, 105: 4603

    12. [12]

      12. Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M. A. B. H.; Watanabe, M. J. Phys. Chem. B, 2004, 108: 16593

    13. [13]

      13. Shin, J. H.; Henderson,W. A.; Passerini, S. Electrochem. Commun., 2003, 5: 1016

    14. [14]

      14. Shin, J. H.; Henderson,W. A.; Appetecchi, G. B.; Alessandrini, F.; Passerini, S. Electrochim. Acta, 2005, 5: 3859

    15. [15]

      15. Cheng, H.; Zhu, C.; Huang, B.; Lu, M.; Yang, Y. Electrochim. Acta, 2007, 52: 5789

    16. [16]

      16. Fortunato, R.; Branco, L. C. C.; Afonso, A. M.; Benavente, J.; Crespo, J. G. J. Membrane Science, 2006, 270: 42

    17. [17]

      17. Fuller, J.; Breda, A. C.; Carlin, R. T. J. Electrochem. Soc., 1997, 144: L67

    18. [18]

      18. Fuller, J.; Breda, A. C.; Carlin, R. T. J. Electroanal. Chem., 1998,459: 29

    19. [19]

      19. Nishida, T.; Tashiro, Y.; Yamamoto, M. J. Fluorine Chem., 2003, 120: 135

    20. [20]

      20. Hagiwara, R.; Hirashige, T.; Tsuda, T.; Ito, Y. J. Fluorine Chem., 1999, 99: 1

    21. [21]

      21. Matsumoto, H.; Miyazakj, Y. Chem. Lett., 2000: 922

    22. [22]

      22. Bonhôte, P.; Dias, A. P.; Papageorgiou, N.; Kalyanasundaram, K.; Grätzel, M. Inorg. Chem., 1996, 35: 1168

    23. [23]

      23. Ye, H.; Huang, J.; Xu, J. J.; Khalfan, A.; Greenbaum, S. G. J. Electrochem. Soc., 2007, 154: A1048

    24. [24]

      24. Evans, J.; Vincent, C. A.; Bruce, P. G. Polymer, 1987, 28: 2324

    25. [25]

      25. Zhang, S. M.; Hou, Y.W.; Huang,W. G.; Shan, Y. K. Electrochim. Acta, 2005, 50: 4097

    26. [26]

      26. Kim, K. S.; Park, S. Y.; Choi, S.; Lee, H. J. Power Sources, 2006, 155: 385

    27. [27]

      27. Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M. A. B. H.; Watanabe, M. J. Phys. Chem. B, 2005, 109: 6103

    28. [28]

      28. Botte, G. G.; White, R. E.; Zhang, Z. M. J. Power Sources, 2001, 97-98: 570

    29. [29]

      29. Wang, Q. S.; Sun, J. H.; Yao, X. L.; Chen, C. H. Journal of Loss Prevention in the Process Industries, 2006, 19: 561

    30. [30]

      30. Saikia, D.; Kumar, A. Electrochim. Acta, 2004, 49: 2581


  • 加载中
    1. [1]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    2. [2]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    3. [3]

      Siyu Zhang Kunhong Gu Bing'an Lu Junwei Han Jiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-. doi: 10.3866/PKU.WHXB202309028

    4. [4]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    5. [5]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    6. [6]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    7. [7]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    8. [8]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    9. [9]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    10. [10]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    11. [11]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    12. [12]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    13. [13]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    14. [14]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    15. [15]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    16. [16]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    17. [17]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    18. [18]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    19. [19]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    20. [20]

      Zhihong LUOYan SHIJinyu ANDeyi ZHENGLong LIQuansheng OUYANGBin SHIJiaojing SHAO . Two-dimensional silica-modified polyethylene oxide solid polymer electrolyte to enhance the performance of lithium-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1005-1014. doi: 10.11862/CJIC.20230444

Metrics
  • PDF Downloads(1707)
  • Abstract views(2923)
  • HTML views(72)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return