Citation: WANG Xi-Zhao, ZHENG Jun-Sheng, FU Rong, MA Jian-Xin. Pulse-Microwave Assisted Chemical Reduction Synthesis of Pt/C Catalyst and Its Electrocatalytic Oxygen Reduction Activity[J]. Acta Physico-Chimica Sinica, ;2011, 27(01): 85-90. doi: 10.3866/PKU.WHXB20110111
-
We prepared a Pt/C catalyst for use in proton exchange membrane fuel cells (PEMFCs) by pulse-microwave assisted chemical reduction synthesis. The microstructure and morphology of the as-prepared catalyst was characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD). The catalyst's electrocatalytic performance in the oxygen reduction reaction (ORR) was measured by cyclic voltammetry (CV), linear sweep voltammetry (LSV), and constant potential polarization. The results indicate that pulse-microwave assisted chemical reduction synthesis is an efficient method to prepare PEMFC catalysts and that the pH and the microwave power largely influence the size and dispersion of Pt nanoparticles. At pH 10 and at a microwave power of 2 kW, the Pt nanoparticles were found to be uniform in size and the Pt nanoparticles size ranged between 1.3 and 2.4 nm with an average size of 1.8 nm. Additionally, the Pt nanoparticles were found to be highly dispersed on the surface of the carbon support. The electrochemical measurements showed that the electrochemical surface area (ESA) of the catalyst was 55.6 m2·g-1 and the catalyst exhibited superior performance and stability in the ORR. The maximum power density of the single cell was 2.26 W·cm-2·mg-1 for the catalyst prepared at a microwave power of 2 kW and a pH of 10 as the cathode material. The maximum power density was higher than that of the catalyst prepared using a microwave power of 1 kW (2.15 W·cm-2·mg-1) and also higher than that of the catalyst from Johnson Matthey (1.89 W·cm-2·mg-1).
-
-
[1]
1. Jia, Y. Q.;Wang, H.W. J. Power Sources, 2006, 155: 3192
-
[2]
2. Appleby, A. J.; ulkes, F. R. Fuel cell handbook. New York: van Nostrand Reinhold, 1989: 12-284
-
[3]
3. Kazim, M. Int. J. Energy Convers. Mgmt., 2000, 42: 7634
-
[4]
4. Dyer, C. K. J. Power Sources, 2002, 106: 31
-
[5]
5. Ahmadi, T. S.;Wang, Z. L.; Green, T. C.; Henglein, A.; EI-Sayed, M. A. Science, 1996, 272: 1924
-
[6]
6. Deivaraj T. C.; Lee J. Y. J. Power Sources, 2005, 142: 43
-
[7]
7. Park G. G.; Yang T. H.; Yoon Y. G.; LeeW. Y.; Kim C. S. Int. J. Hydrog. Energy, 2003, 28(6): 645
-
[8]
8. Chen,W. X.; Zhao, J.; Yang, L. J.; Liu Z. L. Mater. Chem. Phys., 2005, 91: 124
-
[9]
9. Zhao, J.; Chen,W. X.; Zheng, Y. F.; Li, X.; Xu, Z. D. J. Mater. Sci., 2006, 41: 5514
-
[10]
10. Yoshida, S.; Sano, M. Chem. Phys. Lett., 2006, 433: 97
-
[11]
11. Liu, Z. L.; Yang, L. J.; Chen,W. X.; Han, M.; Gan, L. Langmuir, 2004, 20(1): 181
-
[12]
12. Chu, Y. Y.;Wang, Z. B.; Gu, D. M.; Yin, G. P. J. Power Sources, 2010, 195: 1799
-
[13]
13. Song, S. Q.;Wang, Y.; Shen, P. K. J. Power Sources, 2007, 170: 46
-
[14]
14. Wang, H.W.; Dong, R. X.; Chang, H. Y.; Liu, C. L.; Chen, Y.W. Mater. Lett., 2007, 61: 830
-
[15]
15. Liang, Y.; Liao, D.W. Acta Phys. -Chim. Sin., 2008, 24: 317
-
[16]
[梁营, 廖代伟. 物理化学学报, 2008, 24: 317]
-
[17]
16. Wang, Z. B.; Yin, G. P.; Shi, P. F. J. Electrochem. Soc., 2005, 152: 2406
-
[18]
17. Liu, Z. L.; Gan, L. M.; Liang, H.; Chen,W. X.; Lee, J. Y. J. Power Sources, 2005, 139: 73
-
[19]
18. Bock, C.; Paquet, C.; Couillard, M.; Botton, G. A.; MacDougall, B. R. J. Am. Chem. Soc., 2004, 126: 8028
-
[20]
19. Xiao, C. J.; Hu, S.; Fu, Z. H.; Luo, Y. M.;Wang, H. Y. Appl. Chem. Indus., 2007, 36: 855
-
[21]
20. Li,W. Z.; Liang, H. H.; Zhou,W. J.; Qiu, J. H.; Zhou, Z. H.; Sun, G. Q.; Xin, Q. J. Phys. Chem., 2003, 107: 6292.
-
[22]
21. Raadmilovic, V.; Gasteiger, H. A.; Ross, P. N. J. Catal., 1995,154: 98
-
[23]
22. Liu, Z. L.; Lee, J. Y.; Han, M.; Chen,W. X.; Gan, L. M. J. Mater. Chem., 2002, 12: 2453
-
[1]
-
-
[1]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[2]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[3]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[4]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[5]
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
-
[6]
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
-
[7]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[8]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[9]
Xiaoxia WANG , Ya'nan GUO , Feng SU , Chun HAN , Long SUN . Synthesis, structure, and electrocatalytic oxygen reduction reaction properties of metal antimony-based chalcogenide clusters. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1201-1208. doi: 10.11862/CJIC.20230478
-
[10]
Min LI , Xianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065
-
[11]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[12]
Tong Zhou , Jun Li , Zitian Wen , Yitian Chen , Hailing Li , Zhonghong Gao , Wenyun Wang , Fang Liu , Qing Feng , Zhen Li , Jinyi Yang , Min Liu , Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005
-
[13]
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
-
[14]
Yuena Yu , Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076
-
[15]
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
-
[16]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020
-
[17]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[18]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[19]
Tongyu Zheng , Teng Li , Xiaoyu Han , Yupei Chai , Kexin Zhao , Quan Liu , Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107
-
[20]
Wei Zhong , Dan Zheng , Yuanxin Ou , Aiyun Meng , Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005
-
[1]
Metrics
- PDF Downloads(1377)
- Abstract views(2680)
- HTML views(35)