Citation: QIN Shan-Shan, YU Zhi-Wu. Molecular Dynamics Simulations of α-Tocopherol in Model Biomembranes[J]. Acta Physico-Chimica Sinica, ;2011, 27(01): 213-227. doi: 10.3866/PKU.WHXB20110109 shu

Molecular Dynamics Simulations of α-Tocopherol in Model Biomembranes

  • Received Date: 13 September 2010
    Available Online: 23 November 2010

    Fund Project: 国家自然科学基金(20633080, 20973100)资助项目 (20633080, 20973100)

  • Molecular dynamics simulations of α-tocopherol in a number of saturated phospholipid bilayers were performed at 280, 310, and 350 K. The phospholipids contained either short acyl tails, i.e., dimyristoylphosphatidylcholine and dimyristoylphosphatidylethanolamine or long acyl tails, namely distearoylphosphatidylcholine and distearoylphosphatidylethanolamine. The preferential position, hydrogen bonding, orientation, and dynamic properties of α-tocopherol in the bilayers were examined in detail and several conclusions were made. First, the hydroxyl group of α-tocopherol generally remains beneath the interfacial region of the lipid bilayers and it shifts toward the bilayer mid-plane with an increase in temperature. At 350 K it flip-flops between the upper and lower leaflets in the four lipid bilayers. Second, α-tocopherol mainly forms hydrogen bonds with the carbonyl ester oxygen in the lipid head groups and hardly forms hydrogen bonds with the amino groups in the phosphatidylethanolamine (PE) bilayers. Hydrogen bonding with PEs is more stable than hydrogen bonding with phosphatidylcholines (PCs) at low temperatures. Third, α-tocopherol's head group has fluctuating tilt angles relative to the normal of the lipid bilayers and the tail has many different conformations. Fourth, the lateral diffusion rate of α-tocopherol is comparable to that of phospholipid molecules at low temperature and it diffuses much faster than lipids at 350 K. The diffusion rate in the direction perpendicular to the membrane surface is much slower than the lateral diffusion rate.
  • 加载中
    1. [1]

      1. Evans, H. M.; Emerson, O. H.; Emerson, G. A. J. Biol. Chem., 1936, 113: 319

    2. [2]

      2. Atkinson, J.; Epand, R. F.; Epand, R. M. Free Radical Biol. Med., 2008, 44: 739

    3. [3]

      3. Fukuzawa, K.; Matsuura, K.; Tokumura, A.; Suzuki, A.; Terao, J. Free Radical Biol. Med., 1997, 22: 923

    4. [4]

      4. Wang, X. Y.; Quinn, P. J. Progress in Lipid Research, 1999, 38: 309

    5. [5]

      5. Quinn, P. J. Eur. J. Biochem., 1995, 233: 916

    6. [6]

      6. Ortiz, A.; Aranda, F. J.; mez-Fernandez, J. C. Biochim. Biophys. Acta, 1987, 898: 214

    7. [7]

      7. Wang, X. Y.; Semmler, K.; Richter,W.; Quinn, P. J. Arch. Biochem. Biophys., 2000, 377: 304

    8. [8]

      8. Gao,W. Y.; Chen, L.;Wu, F. G.; Yu, Z.W. Acta Phys. -Chim. Sin., 2008, 24: 1149.

    9. [9]

      [高文颖, 陈琳, 吴富根, 尉志武. 物理化 学学报, 2008, 24: 1149]

    10. [10]

      9. Wang, X. Y.; Quinn, P. J. Chem. Phys. Lipids,2002, 114: 1

    11. [11]

      10. Stillwell,W.; Ehringer,W.;Wang, L. J.;Wassall, S. R. Biophys. J., 1990, 57: A271

    12. [12]

      11. Suzuki, Y. J.; Tsuchiya, M.;Wassall, S. R.; Choo, Y. M.; vil, G.; Kagan, V. E.; Packer, L. Biochemistry, 1993, 32: 10692

    13. [13]

      12. Wassall, S. R.; McCabe, M. A.; Ehringer,W.; Stillwell,W. Biophys. J., 1990, 57: A473

    14. [14]

      13. Wassall, S. R.; Thewalt, J. L.;Wong, L.; rrisen, H.; Cushley, R. J. Biochemistry, 1986, 25: 319

    15. [15]

      14. Villalain, J.; Aranda, F. J.; mez-Fernandez, J. C. Eur. J. Biochem., 1986, 158: 141

    16. [16]

      15. Wassall, S. R.; Phelps, T. M.;Wang, L. J.; Langsford, C. A.; Stillwell,W. Prog. Clin. Biol. Res., 1989, 292: 435

    17. [17]

      16. Massey, J. B. Chem. Phys. Lipids, 2001, 109: 157

    18. [18]

      17. Srivastava, M. L.; Shukla, N. K.; Singh, S. K.; Jaiswal, M. R. J. Membr. Sci., 1996, 117: 39

    19. [19]

      18. Srivastava, S.; Phadke, R. S.; vil, G.; Rao, C. N. R. Biochim. Biophys. Acta, 1983, 734: 353

    20. [20]

      19. Fragata, Y. M.; Bellemare, Y. F. Chem. Phys. Lipids, 1980, 27: 93

    21. [21]

      20. Kagan, V. E.; Quinn, P. J. Eur. J. Biochemistry, 1988, 171: 661

    22. [22]

      21. Sanchez-Migallon, M. P.; Aranda, F. J.; mez-Fernandez, J. C. Biochim. Biophys. Acta, 1996, 1279: 251

    23. [23]

      22. mez-Fernandez, J. C.; Aranda, F. C.; Villaloan, J. Location and dynamics of α-tocopherol in membranes//Membrane biotechnology. mez-Fernandez, J. C.; Chapman, D.; Packer, L. Eds. Basel: Birkhauser Verlag, 1991: 98-115

  • 加载中
    1. [1]

      Yukun Xing Xiaoyu Xie Fangfang Chen . A Sunlit Gift: Vitamin D. University Chemistry, 2024, 39(9): 28-34. doi: 10.12461/PKU.DXHX202402006

    2. [2]

      Yinglian LIChengcheng ZHANGXinyu ZHANGXinyi WANG . Spin crossover in [Co(pytpy)2]2+ complexes modified by organosulfonate anions. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1162-1172. doi: 10.11862/CJIC.20240087

    3. [3]

      Liwei Wang Guangran Ma Li Wang Fugang Xu . A Comprehensive Analytical Chemistry Experiment: Colorimetric Detection of Vitamin C Using Nanozyme and Smartphone. University Chemistry, 2024, 39(8): 255-262. doi: 10.3866/PKU.DXHX202312094

    4. [4]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    5. [5]

      Haiying Jiang Huilin Guo Yongliang Cheng Tongyu Xu Jiquan Liu Mingli Peng . Teaching Design of the Nernst Equation Based on the “Flipped Classroom” Method. University Chemistry, 2024, 39(8): 84-90. doi: 10.3866/PKU.DXHX202312091

    6. [6]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    7. [7]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    8. [8]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    9. [9]

      Fei Xie Shichong Yu Ting Wang Yongsheng Jin Dazhi Zhang Yumeng Hao . Practice and Exploration of O-PIRTAS Flipped Classroom in Organic Chemistry Course. University Chemistry, 2024, 39(4): 238-243. doi: 10.3866/PKU.DXHX202310055

    10. [10]

      Jinfeng Chu Lan Jin Yu-Fei Song . Exploration and Practice of Flipped Classroom in Inorganic Chemistry Experiment: a Case Study on the Preparation of Inorganic Crystalline Compounds. University Chemistry, 2024, 39(2): 248-254. doi: 10.3866/PKU.DXHX202308016

    11. [11]

      Yixuan Zhu Qingtong Wang Jin Li Lin Chen Junlong Zhao . Blog of Oxytocin. University Chemistry, 2024, 39(9): 134-140. doi: 10.12461/PKU.DXHX202310090

    12. [12]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    13. [13]

      Jingfeng Lan Li Wu Guangnong Lu Liu Yang Xiaolong Li Xiangyang Xu Yongwen Shen E Yu . Application of 3E Method in the Negative List Management System in Teaching Laboratory. University Chemistry, 2024, 39(4): 54-61. doi: 10.3866/PKU.DXHX202310130

    14. [14]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    15. [15]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . Kinetic Resolution Enabled by Photoexcited Chiral Copper Complex-Mediated Alkene EZ Isomerization: A Comprehensive Chemistry Experiment for Undergraduate Students. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    16. [16]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    17. [17]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    18. [18]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    19. [19]

      Wanqun Hu Pingping Zhu Yuan Zheng Wanqun Zhang Wei Shao Hong Wu Qiang Zhou Kaiping Yang Xiang Sheng . Design and Practice of Ideological and Political Case Study in Instrumental Analysis Experiment Course: the Extraction and Structural Identification of Artemisinin. University Chemistry, 2024, 39(2): 203-207. doi: 10.3866/PKU.DXHX202310062

    20. [20]

      Shui Hu Houjin Li Zhenming Zang Lianyun Li Rong Lai . Integration of Science and Education Promotes the Construction of Undergraduate-to-Master’s Integration Experimental Courses: A Case Study on the Extraction, Separation and Identification of Artemisinin from Artemisia annua. University Chemistry, 2024, 39(4): 314-321. doi: 10.3866/PKU.DXHX202310063

Metrics
  • PDF Downloads(1181)
  • Abstract views(2796)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return