Citation: YE Qing, ZHAO Jian-Sheng, LI Dong-Hui, ZHAO Jun, CHENG Shui-Yuan, KANG Tian-Fang. Au/SnO2 and M-Au (M=Pt, Pd)/SnO2 Bimetallic Catalysts for the Low-Temperature Catalytic Oxidation of CO[J]. Acta Physico-Chimica Sinica, ;2011, 27(01): 169-176. doi: 10.3866/PKU.WHXB20110108 shu

Au/SnO2 and M-Au (M=Pt, Pd)/SnO2 Bimetallic Catalysts for the Low-Temperature Catalytic Oxidation of CO

  • Received Date: 10 August 2010
    Available Online: 23 November 2010

    Fund Project: 国家自然科学基金项目(20777005) (20777005) 北京市自然科学基金项目(8082008) (8082008) 北京市组织部优秀人才基金项目(20071D0501500210) (20071D0501500210)北京工业大学人才强教深化计划项目(PHR201007105)资助 (PHR201007105)

  • Au/SnO2 catalysts were prepared by deposition-precipitation (DP), co-precipitation (CP) and typical wet impregnation methods (IM). M(M=Pt, Pd)-promoted Au/SnO2 catalysts were prepared by the DP method. The samples were characterized by X-ray diffraction (XRD), Brunaner-Emmett-Teller (BET) adsorption, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) techniques. The results showed that compared with CP and IM, the DP method led to a fairly uniform dispersion of ld nanoparticles with diameters less than 5 nm and larger specific surfaces for the Au/ SnO2 catalyst. The Au in Au/SnO2-DP was metallic (Au0) while in Au/SnO2-CP and Au/SnO2-IM the Au consisted of a mixture of Au0 and Au3+. The oxidation of carbon monoxide over the Au/SnO2-DP and Mpromoted Au/SnO2-DP catalysts were investigated. We observed that the Pd- or Pt-doping of Au/SnO2-DP resulted in a significant increase in performance. We conclude that the different activities of the Au/SnO2 catalysts that were prepared using different preparation methods may be attributed to the size of the Au particles and the states of ld. A remarkable improvement in catalytic activity because of Pd or Pt doping was associated with strong interactions between Pd or Pt and Au.

  • 加载中
    1. [1]

      1. Gardner, S. D.; Hoflund, G. B.; Schryer, D. R.; Schryer, J.; Upchurch, B. T.; Kielin, E. J. Langmuir., 1991, 7: 2135

    2. [2]

      2. Li, Q. X.; Zhou, X. J.; Li, J. G.; Xu, Q. J. Acta Phys. -Chim. Sin.,2010, 26: 1488.

    3. [3]

      [李巧霞, 周小金, 李金光, 徐群杰. 物理化学学报, 2010, 26: 1488]

    4. [4]

      3. Liu, Y. J.; Zhang, J. J.; Li, N.; Lin, B. X. Acta Phys. -Chim. Sin., 1999, 15: 97.

    5. [5]

      [刘英骏, 张继军, 李能, 林炳雄. 物理化学学报 1999, 15: 97]

    6. [6]

      4. Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Chem. Lett., 1987. , 2: 405

    7. [7]

      5. Zhang, X.; Shi, H.; Xu, B. Q. Catal. Today, 2007, 122: 330

    8. [8]

      6. Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. J. Catal., 1989, 115: 301

    9. [9]

      7. Haruta, M.; Tsubota, S.; Kobayashi, T.; Kageyama, H.; Genet, M. J.; Delmon, B. J. Catal.,1993, 144: 175

    10. [10]

      8. Santhosh, P. N.; Potde, H. S.; Date, S. K. J. Mater. Res., 1997, 12: 326

    11. [11]

      9. Kung, M. C.; Park, P.W.; Kim, D.W.; Kung, H. H. J. Catal., 1999, 181: 1

    12. [12]

      10. Chang, C. K.; Chen, Y. J.; Yeh, C. T. Appl. Catal. A, 1998, 174: 13

    13. [13]

      11. Buffat, P.; Borel J.P. Phys. Rev. A, 1976, 13: 2287

    14. [14]

      12. Haruta, M. Catal. Today, 1997, 36: 153

    15. [15]

      13. Ivanova, S.; Petit, C.; Pitchon, V. Appl. Catal. A, 2004, 267: 191

    16. [16]

      14. Tsubota, S.; Cunningham, D. A. H.; Bando, Y. ; Haruta, M. Stud. Surf. Sci. Catal., 1995, 91: 227

    17. [17]

      15. Bollinger, M. A.; Vannice, M. A. Appl. Catal. B, 1996, 8: 417

    18. [18]

      16. Wagner, C. D.; Moulder, J. F.; Davis, L. E.; Riggs,W. M. Handbook of X-ray photoelectron spectroscopy. Minnesota:Perkin-Elmer, 1979

    19. [19]

      17. Lin, J. N.; Chen, J. H.; Hsiao, C. Y.; Kang, Y. M.;Wan, B. Z. Appl. Catal. B, 2002, 36: 19

    20. [20]

      18. Soares, J. M. C.; Morrall, P.; Crossley, A.; Harris, P.; Bowker, M. J. Catal., 2003, 219: 17

    21. [21]

      19. Visco, A. M.; Neri, F.; Neri, G.; Donato, A.; Milone, C.; Galvagno, S. Phys. Chem. Chem. Phys., 1999, 1: 2869

    22. [22]

      20. Radnik, J.; Mohr, C.; Claus, P. Phys. Chem. Chem. Phys., 2003, 5: 172

    23. [23]

      21. Arrii, S.; Morfin, F.; Renouprez, A. J.; Rousset, J. L. J. Am. Chem.Soc., 2004, 126: 1199

    24. [24]

      22. Nascente, P. A. P.; de Castro, S. G. C.; Landers, R.; Kleiman, G. G. Phys. Rev. B, 1991. 43:4659

    25. [25]

      23. Yi, C.W.; Luo, K.;Wei, T.; odman, D.W. J. Phys. Chem. B, 2005, 109:18535

    26. [26]

      24. Li, C. Y.; Shen, Y. N.; Hu, R. S., Transactions of Nonferrous Metals Society of China, 2007: s1107.

    27. [27]

      [李常艳, 沈岳年, 胡瑞生 中国有色金属学会会刊, 2007, 17: s1107]

    28. [28]

      25. Li, J. L.;Wang H. L. Environ. Sci. Tech., 1995, 70. (3) :10.

    29. [29]

      [李金 林, 王海龙. 环境科学与技术, 1995, 70. (3):10]

    30. [30]

      26. Grutsch, P. A.; Zeller, M. V.; Fehlner, T. P. Inorg. Chem., 1973, 12: 1431

    31. [31]

      27. Bond, G. C.; Thompson, D. T. Catal. Rev. Sci. Eng., 1999, 41: 319

    32. [32]

      28. Schubert, M. M. S.; Hackenberg, A. C.; van Veen, M.; Muhler, V. Plzak, R. J. Behm. J. Catal., 2001, 197: 113.

    33. [33]

      29. Grisel, R. J. H.; Nieuwenhuys, B. E. Catal. Today, 2001, 64: 69.

    34. [34]

      30. Henao, J. D.; Caputo, T.; Yang, J. H.; Kung, M. C.; Kung, H. H. J. Phys. Chem. B, 2006, 110: 8689

    35. [35]

      31. Venezia, A. M.; La Parola, V.; Nicoli, V.; Deganello, G. J. Catal., 2002, 212: 56

    36. [36]

      32. Kochubey, D. I.; Pavlova, S. N.; Nov rodov, B. N.; Kryukova, G. N.; Sadykov, V.A. J. Catal., 1996, 161: 500

    37. [37]

      33. Nutt, M. O.; Heck, K. N.; Alvarez, P.;Wong, M. S. Appl. Catal. B, 2006, 69: 115

    38. [38]

      34. Edwards, J. K.; Solsona, B. E.; Landon, P.; Carley, A. F.; Herzing, A.; Kiely, C. J.; Hutchings, G. J. J. Catal., 2005, 236: 69

    39. [39]

      35. Enache, D. I.; Edwards, J. K.; Landon, P.; Solsona, B. E.; Carley,A. F.; Herzing, A. A.;Watanabe, M.; Kiely, C. J.; Knight, D.W.; Hutchings, G. J. Science, 2006, 311: 362 

    40. [40]

      36. Comotti, M.; Li,W. C.; Spliethoff, B.; Schuth, F. J. Am. Chem. Soc., 2006, 128: 917

    41. [41]

      37. Liu, H. C.; Kozlov, A. I.; Kozlova, A. P.; Shido, T.; Akasura, K.; Iwasawa, Y. J. Catal., 1999, 18x5: 252

    42. [42]

      38. Gangal, N. D.; Gupta, N. M.; Iyer, R. M. J. Catal., 1990, 126. :13


  • 加载中
    1. [1]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    2. [2]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    3. [3]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    4. [4]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    5. [5]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

    9. [9]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    10. [10]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    11. [11]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    15. [15]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    16. [16]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    17. [17]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    18. [18]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    19. [19]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    20. [20]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

Metrics
  • PDF Downloads(1432)
  • Abstract views(2621)
  • HTML views(53)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return