Citation: JIA Yu-Xiang, LI Yan, HU Yang-Dong. Behavior of Carbon Nanotube Membranes as Channels of Salt and Water in Forward Osmosis Process[J]. Acta Physico-Chimica Sinica, ;2011, 27(01): 228-232. doi: 10.3866/PKU.WHXB20110104 shu

Behavior of Carbon Nanotube Membranes as Channels of Salt and Water in Forward Osmosis Process

  • Received Date: 12 July 2010
    Available Online: 19 November 2010

    Fund Project: 国家自然科学基金(20806076) (20806076)国家重点基础研究发展计划(973) (2003CB615706)资助项目 (973) (2003CB615706)

  • We investigated the influence of carbon nanotube (CNT) size using CNTs including CNT(6,6), CNT(7,7), CNT(8,8), CNT(9,9), CNT(10,10), and CNT(11,11), and the influence of draw solution concentrations, such as 2.5, 3.75, and 5.0 mol·L-1, on the permeation behaviors of salt and water molecules through the biomimetically manufactured forward osmosis (FO) membranes. Nanosecondscale molecular dynamic simulations were carried out to obtain the relevant information, including the distributions of the water molecules, water flux, and salt permeation within the different CNT membranes. Simulation results show that the FO membrane incorporating CNT(8,8) can achieve the highest water flux and also the lowest salt permeation.

  • 加载中
    1. [1]

      1 Van der Bruggen, B.; Lejon, L.; Vandecasteele, C. Environ. Sci. Technol., 2003, 37: 3733

    2. [2]

      2 Elimelech, M. Membr. Technol., 2007, 1: 7

    3. [3]

      3 Mi, B.; Elimelech, M. J. Membr. Sci., 2008, 320: 292

    4. [4]

      4 Gao, C.; Zheng, G.;Wang, M.;Wang, D.; Gao, X.; Zhou, Y. Technol. Water Treat., 2008, 34(2): 1

    5. [5]

      [高从堦, 郑根江, 汪锰, 王铎, 高学理, 周勇, 水处理技术, 2008, 34(2): 1]

    6. [6]

      5 Cath, T. Y.; rmly, S.; Beaudry, E. G.; Adams, V. D.; Childress, A. E. J. Membr. Sci., 2005, 257: 85

    7. [7]

      6 McCutcheon, J. R.; McGinnis, R. L.; Elimelech, M. J. Membr. Sci., 2006, 278: 114

    8. [8]

      7 Cath, T. Y.; Childress, A. E. J. Membr. Sci., 2006, 281: 70

    9. [9]

      8 Jin, K.Y.;Yu, S. C.; Gao, C. J.; Lin, K. Bullet. Sci. Technol., 2000, 16: 125

    10. [10]

      [金可勇, 俞三传, 高从堦, 林柯. 科技通报, 2000,16: 125]

    11. [11]

      9 Fu, S. Q.; Chen, P.; Luo, Z. X. Environ. Sci. Manag., 2006, 31(5): 96

    12. [12]

      [付守琪, 陈萍, 罗专溪. 环境科学与管理, 2006, 31(5): 96]

    13. [13]

      10 Wang, K. Y.; Yang, Q.; Chung,T.; Raja palan, R. Chem. Eng. Sci., 2009, 64: 1577

    14. [14]

      11 Wang, K. Y.; Chung, T.; Qin, J. J. Membr. Sci., 2007, 300: 6

    15. [15]

      12 Yang, Q.;Wang, K. Y.; Chung, T. Sep. Purif. Technol., 2009, 69: 269

    16. [16]

      13 Wang, R.; Shi, L.; Tanga, Ch. Y.; Chou, S.; Qiu, C.; Fane, A. G. J. Membr. Sci., 2010, 355: 158

    17. [17]

      14 Hummer, G.; Rasaiah, J. C.; Noworyta, J. P. Letters to Nnature, 2001, 414: 188

    18. [18]

      15 Zhu, F.; Schulten, K. Biophys. J., 2003, 85: 236

    19. [19]

      16 Kalra, A.; Garde, S.; Hummer, G. Proceedings of the of Sciences of the United State of American, 2003, 100:10175

    20. [20]

      17 Della , C.; Naor, M. M.; Hummer, G. Phys. Rev. Lett., 2003, 90: 105902

    21. [21]

      18 Wang, J.; Zhu, Y.; Zhou, J.; Lu, X. Acta Chimica Sinica, 2003, 61 (12): 1891

    22. [22]

      [王俊, 朱宇, 周健, 陆小华, 化学学报, 2003,61 (12): 1891]

    23. [23]

      19 Holt, J.; Park, H.;Wang, Y.; Stadermann, M.; Artyukhin, A.; Gri ropolous, C.; Noy, A.; Bakajin, O. Science, 2006, 312: 1034

    24. [24]

      20 Peter, C.; Hummer, G. Biophys. J., 2005, 89: 2222

    25. [25]

      21 Shao, Q.; Zhou, J.; Lu, L.; Lu, X.; Zhu, Y.; Jiang, S. Nano Letters, 2009, 9: 989

    26. [26]

      22 Beckstein, O.; Sansom, M. S. P. Phys. Biol., 2004, 1: 42

    27. [27]

      23 Corry, B. J. Phys. Chem. B, 2008, 112: 1427

    28. [28]

      24 Alexiadis, A.; Kassinos, S. Mol. Simul., 2008, 34: 671

    29. [29]

      25 Thomas, J. A.; McGaughey, A. J. H. Nano Lett., 2008, 8: 2788


  • 加载中
    1. [1]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    4. [4]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

    5. [5]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    6. [6]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    7. [7]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    8. [8]

      Xinxin JINGWeiduo WANGHesu MOPeng TANZhigang CHENZhengying WULinbing SUN . Research progress on photothermal materials and their application in solar desalination. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1033-1064. doi: 10.11862/CJIC.20230371

    9. [9]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    10. [10]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    11. [11]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    12. [12]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    13. [13]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    14. [14]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    15. [15]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    16. [16]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    17. [17]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    18. [18]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    19. [19]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    20. [20]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

Metrics
  • PDF Downloads(1287)
  • Abstract views(2780)
  • HTML views(70)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return