Citation: LUO Ying, CUI Xiao-Li, XIE Jing-Ying. Preparation and Visible Light Photoelectrochemical Response of TiO2-MoO3 Composite Nanotube Thin Films[J]. Acta Physico-Chimica Sinica, ;2011, 27(01): 135-142. doi: 10.3866/PKU.WHXB20110103 shu

Preparation and Visible Light Photoelectrochemical Response of TiO2-MoO3 Composite Nanotube Thin Films

  • Received Date: 21 June 2010
    Available Online: 19 November 2010

    Fund Project: 国家重点基础研究发展规划项目(973)(2010CB933703)以及上海市科学技术委员会纳米专项(1052nm01800) 及福建省福州大学光催化重点实验室&mdash (973)(2010CB933703)以及上海市科学技术委员会纳米专项(1052nm01800)省部共建国家重点实验室培育基地资助项目(K-081018) (K-081018)

  • TiO2-MoO3 composite nanotube thin films were obtained by the thermal treatment of titanium dioxide nanotube thin films in the presence of MoO3. Titanium dioxide nanotubes (TiO2 NTs) thin films were prepared by the anodic oxidation of titanium foil. The resultant thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), Mott-Schottky analysis, and photoelectrochemical methods. The XRD patterns showed that an anatase type TiO2 was present in the thin films. Nanotube structures for the thin films were observed by SEM. MoO3 was dispersed on the TiO2 NT top surface. Elemental analysis by XPS showed that MoO3 recombined with the TiO2 NTs to form TiO2-MoO3 composite nanotube thin films. The influence of time and temperature of thermal treatment on the photoelectrochemical response for the TiO2-MoO3 composite nanotube thin film electrodes were investigated. The photoelectrochemical response of the TiO2-MoO3 composite nanotube thin film increased under visible light illumination compared with the pristine TiO2 NTs. The highest photoelectrochemical response was observed for the TiO2-MoO3 composite nanotube thin film obtained by thermal treatment at 450 °C for 60 min.

  • 加载中
    1. [1]

      1. Yang, L. X.; Luo, S. L.; Cai, Q. Y.; Yao, S. Z. Chin. Sci. Bull., 2010, 55: 331

    2. [2]

      2. Sun, L.; Li, J.; Zhuang, H. F.; Lai, Y. K.;Wang, C. L.; Lin, C. J. Chinese Journal of Inorganic Chemistry, 2007, 23(11): 1841 [孙岚, 李静, 庄惠芳, 赖跃坤, 王成林, 林昌健. 无机化学学报, 2007, 23(11): 1841]

    3. [3]

      3. Hiroaki, T.; Jan, M. M.; Andrei, G.; Arlindo, S. R.; Luciano, T.; Patrik, S. Corrosion Sci., 2007, 49: 203

    4. [4]

      4. Nah, Y. C.; Ghicov, A.; Kim, D.; Berger, S.; Schmuki, P. J. Am. Chem. Soc., 2008, 130: 16154

    5. [5]

      5. Higashimoto, S.; Sakiyama, M.; Azuma, M. Thin Solid Films, 2006, 503: 201

    6. [6]

      6. Gao, X. F.; Sun,W. T.; Hu, Z. D.; Ai, G.; Zhang, Y. L.; Feng, S.; Li, F.; Peng, L. M. J. Phys. Chem. C, 2009, 113: 20481

    7. [7]

      7. Sun,W. T.; Yu, Y.; Pan, H. Y.; Gao, X. F.; Chen, Q.; Peng, L. M. J. Am. Chem. Soc., 2008, 130: 1124

    8. [8]

      8. So,W.W.; Kim, K. J.; Moon, S. J. Int. J. Hydrog. Energy, 2004, 29: 229

    9. [9]

      9. Chary, K. V. R.; Bhaskar, T.; Seela, K. K.; Lakshmi, K. S.; Reddy, K. R. Appl. Catal. A, 2001, 208: 291

    10. [10]

      10. Kim, M. R.; Ahn, S. J.; Janga, D. J. Eur. Phys. J. D, 2009, 52: 75

    11. [11]

      11. Song, K. Y.; Park, M. K.; Kwon, Y. T.; Lee, H.W.; Chung,W. J.; Lee,W. I. Chem. Mater., 2001, 13: 2349

    12. [12]

      12. Kuang, S. Y.; Yang, L. X.; Luo, S. L.; Cai, Q. Y. Appl. Surf. Sci., 2009, 255: 7385

    13. [13]

      13. Agarwal, P.; Paramasivam, I.; Shrestha, N. K.; Schmuki, P. Chem. Asian J., 2010, 5: 66

    14. [14]

      14. Natori, H.; Kobayashi, K.; Takahashi, M. J. Oleo Sci., 2009, 58 (4): 203

    15. [15]

      15. Takahashi, Y.; Ngaotrakanwiwat, P.; Tatsuma, T. Electrochim. Acta, 2004, 49: 2025

    16. [16]

      16. Gulkova, D.; Kaluza, L.; Vit, Z.; Zdrazil, M. Catal. Lett., 2006, 112: 193

    17. [17]

      17. Chu,W. G.;Wang, H. F.; Guo, Y. J.; Zhang, L. N.; Han, Z. H.; Li, Q. Q.; Fan, S. S. Inorg. Chem., 2009, 48(3): 1243

    18. [18]

      18. Hu, M. Z.; Lai, P.; Bhuiyan, M. S.; Tsouris, C.; Gu, B. H.; Paranthaman, M. P.; Gabitto, J.; Harrison, L. J. Mater. Sci., 2009, 44: 2820

    19. [19]

      19. Wang, J.; Zhao, L.; Lin, S. Y.; Lin, Z. Q. J. Mater. Chem., 2009, 19: 3682

    20. [20]

      20. Srimala Sreekantana, S.; Lockmana, Z.; Hazana, R.; Tasbihib, M.; Tongb, L. K.; Mohamedb, A. R. J. Alloy. Compd., 2009, 485: 478

    21. [21]

      21. Zhang,W. Y.; Xi, Z. P.; Li, G. Z.; Li, Y. N.; Zhang, J.; Tang, H. P. Rare Metal Materials and Engineering, 2009, 38(10): 1877 [张文彦, 奚正平, 李广忠, 李亚宁, 张健, 汤慧萍. 稀有金属材料与工程, 2009, 38(10): 1877]

    22. [22]

      22. Zhao, L.; Jiang, Q.; Lian, J. S. Appl. Surf. Sci., 2008, 254: 4620

    23. [23]

      23. Yamamoto, Y.; Matsumoto, Y.; Koinuma, H. Appl. Surf. Sci., 2004, 238: 189

    24. [24]

      24. Zhang, X. Y.; Cui, X. L. Acta Phys. -Chim. Sin., 2009, 25(9): 1829 [张晓艳, 崔晓莉. 物理化学学报, 2009, 25(9): 1829]

    25. [25]

      25. Shrestha, N. K.; Nah, Y. C.; Tsuchiyab, H.; Schmuki, P. Chem. Commun., 2009: 2008

    26. [26]

      26. Elder, S. H.; Cot, F. M.; Su, Y.; Heald, S. M.; Tyryshkin, A. M.; Bowman, M. K.; Gao, Y.; Joly, A. G.; Balmer, M. L.; Kolwaite, A. C.; Magrini, K. A.; Blake, D. M. J. Am. Chem. Soc., 2000, 122: 5138

    27. [27]

      27. Du, Y. K.; Gan, Y. Q.; Hua, N. P.; Yang, P. Chemical Research and Application, 2004, 16(6): 802 [杜玉扣, 甘玉琴, 华南平, 杨平. 化学研究与应用, 2004, 16(6): 802]

    28. [28]

      28. Zhao, Q.; Jin, J. J.; Jiang, T. S.; Yin, H. B. Journal of the Chinese Ceramic Society, 2008, 36(S1): 1 [赵谦, 荆俊杰, 姜廷顺, 殷恒波. 硅酸盐学报, 2008, 36(S1): 1]

    29. [29]

      29. Tsujiko, A.; Itoh, H.; Kisumi, T.; Shiga, A.; Murakoshi, K.; Nakato, Y. J. Phys. Chem. B, 2002, 106: 5878

    30. [30]

      30. Kontos, A. I.; Likodimos, V.; Stergiopoulos, T.; Tsoukleris, D. S.; Falaras, P. Chem. Mater., 2009, 21: 662


  • 加载中
    1. [1]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    4. [4]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    5. [5]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    6. [6]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    7. [7]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    8. [8]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    9. [9]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    10. [10]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    11. [11]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    12. [12]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    13. [13]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    14. [14]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    15. [15]

      Hongye Bai Lihao Yu Jinfu Xu Xuliang Pang Yajie Bai Jianguo Cui Weiqiang Fan . Controllable Decoration of Ni-MOF on TiO2: Understanding the Role of Coordination State on Photoelectrochemical Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100096-100096. doi: 10.1016/j.cjsc.2023.100096

    16. [16]

      Wenhao WangGuangpu ZhangQiufeng WangFancang MengHongbin JiaWei JiangQingmin Ji . Hybrid nanoarchitectonics of TiO2/aramid nanofiber membranes with softness and durability for photocatalytic dye degradation. Chinese Chemical Letters, 2024, 35(7): 109193-. doi: 10.1016/j.cclet.2023.109193

    17. [17]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    18. [18]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    19. [19]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    20. [20]

      Yifen HeChao QuNa RenDawei Liang . Enhanced degradation of refractory organics in ORR-EO system with a blue TiO2 nanotube array modified Ti-based Ni-Sb co-doped SnO2 anode. Chinese Chemical Letters, 2024, 35(8): 109262-. doi: 10.1016/j.cclet.2023.109262

Metrics
  • PDF Downloads(1867)
  • Abstract views(2609)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return