Citation: LUO Ying, CUI Xiao-Li, XIE Jing-Ying. Preparation and Visible Light Photoelectrochemical Response of TiO2-MoO3 Composite Nanotube Thin Films[J]. Acta Physico-Chimica Sinica, ;2011, 27(01): 135-142. doi: 10.3866/PKU.WHXB20110103 shu

Preparation and Visible Light Photoelectrochemical Response of TiO2-MoO3 Composite Nanotube Thin Films

  • Received Date: 21 June 2010
    Available Online: 19 November 2010

    Fund Project: 国家重点基础研究发展规划项目(973)(2010CB933703)以及上海市科学技术委员会纳米专项(1052nm01800) 及福建省福州大学光催化重点实验室&mdash (973)(2010CB933703)以及上海市科学技术委员会纳米专项(1052nm01800)省部共建国家重点实验室培育基地资助项目(K-081018) (K-081018)

  • TiO2-MoO3 composite nanotube thin films were obtained by the thermal treatment of titanium dioxide nanotube thin films in the presence of MoO3. Titanium dioxide nanotubes (TiO2 NTs) thin films were prepared by the anodic oxidation of titanium foil. The resultant thin films were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS), Mott-Schottky analysis, and photoelectrochemical methods. The XRD patterns showed that an anatase type TiO2 was present in the thin films. Nanotube structures for the thin films were observed by SEM. MoO3 was dispersed on the TiO2 NT top surface. Elemental analysis by XPS showed that MoO3 recombined with the TiO2 NTs to form TiO2-MoO3 composite nanotube thin films. The influence of time and temperature of thermal treatment on the photoelectrochemical response for the TiO2-MoO3 composite nanotube thin film electrodes were investigated. The photoelectrochemical response of the TiO2-MoO3 composite nanotube thin film increased under visible light illumination compared with the pristine TiO2 NTs. The highest photoelectrochemical response was observed for the TiO2-MoO3 composite nanotube thin film obtained by thermal treatment at 450 °C for 60 min.

  • 加载中
    1. [1]

      1. Yang, L. X.; Luo, S. L.; Cai, Q. Y.; Yao, S. Z. Chin. Sci. Bull., 2010, 55: 331

    2. [2]

      2. Sun, L.; Li, J.; Zhuang, H. F.; Lai, Y. K.;Wang, C. L.; Lin, C. J. Chinese Journal of Inorganic Chemistry, 2007, 23(11): 1841 [孙岚, 李静, 庄惠芳, 赖跃坤, 王成林, 林昌健. 无机化学学报, 2007, 23(11): 1841]

    3. [3]

      3. Hiroaki, T.; Jan, M. M.; Andrei, G.; Arlindo, S. R.; Luciano, T.; Patrik, S. Corrosion Sci., 2007, 49: 203

    4. [4]

      4. Nah, Y. C.; Ghicov, A.; Kim, D.; Berger, S.; Schmuki, P. J. Am. Chem. Soc., 2008, 130: 16154

    5. [5]

      5. Higashimoto, S.; Sakiyama, M.; Azuma, M. Thin Solid Films, 2006, 503: 201

    6. [6]

      6. Gao, X. F.; Sun,W. T.; Hu, Z. D.; Ai, G.; Zhang, Y. L.; Feng, S.; Li, F.; Peng, L. M. J. Phys. Chem. C, 2009, 113: 20481

    7. [7]

      7. Sun,W. T.; Yu, Y.; Pan, H. Y.; Gao, X. F.; Chen, Q.; Peng, L. M. J. Am. Chem. Soc., 2008, 130: 1124

    8. [8]

      8. So,W.W.; Kim, K. J.; Moon, S. J. Int. J. Hydrog. Energy, 2004, 29: 229

    9. [9]

      9. Chary, K. V. R.; Bhaskar, T.; Seela, K. K.; Lakshmi, K. S.; Reddy, K. R. Appl. Catal. A, 2001, 208: 291

    10. [10]

      10. Kim, M. R.; Ahn, S. J.; Janga, D. J. Eur. Phys. J. D, 2009, 52: 75

    11. [11]

      11. Song, K. Y.; Park, M. K.; Kwon, Y. T.; Lee, H.W.; Chung,W. J.; Lee,W. I. Chem. Mater., 2001, 13: 2349

    12. [12]

      12. Kuang, S. Y.; Yang, L. X.; Luo, S. L.; Cai, Q. Y. Appl. Surf. Sci., 2009, 255: 7385

    13. [13]

      13. Agarwal, P.; Paramasivam, I.; Shrestha, N. K.; Schmuki, P. Chem. Asian J., 2010, 5: 66

    14. [14]

      14. Natori, H.; Kobayashi, K.; Takahashi, M. J. Oleo Sci., 2009, 58 (4): 203

    15. [15]

      15. Takahashi, Y.; Ngaotrakanwiwat, P.; Tatsuma, T. Electrochim. Acta, 2004, 49: 2025

    16. [16]

      16. Gulkova, D.; Kaluza, L.; Vit, Z.; Zdrazil, M. Catal. Lett., 2006, 112: 193

    17. [17]

      17. Chu,W. G.;Wang, H. F.; Guo, Y. J.; Zhang, L. N.; Han, Z. H.; Li, Q. Q.; Fan, S. S. Inorg. Chem., 2009, 48(3): 1243

    18. [18]

      18. Hu, M. Z.; Lai, P.; Bhuiyan, M. S.; Tsouris, C.; Gu, B. H.; Paranthaman, M. P.; Gabitto, J.; Harrison, L. J. Mater. Sci., 2009, 44: 2820

    19. [19]

      19. Wang, J.; Zhao, L.; Lin, S. Y.; Lin, Z. Q. J. Mater. Chem., 2009, 19: 3682

    20. [20]

      20. Srimala Sreekantana, S.; Lockmana, Z.; Hazana, R.; Tasbihib, M.; Tongb, L. K.; Mohamedb, A. R. J. Alloy. Compd., 2009, 485: 478

    21. [21]

      21. Zhang,W. Y.; Xi, Z. P.; Li, G. Z.; Li, Y. N.; Zhang, J.; Tang, H. P. Rare Metal Materials and Engineering, 2009, 38(10): 1877 [张文彦, 奚正平, 李广忠, 李亚宁, 张健, 汤慧萍. 稀有金属材料与工程, 2009, 38(10): 1877]

    22. [22]

      22. Zhao, L.; Jiang, Q.; Lian, J. S. Appl. Surf. Sci., 2008, 254: 4620

    23. [23]

      23. Yamamoto, Y.; Matsumoto, Y.; Koinuma, H. Appl. Surf. Sci., 2004, 238: 189

    24. [24]

      24. Zhang, X. Y.; Cui, X. L. Acta Phys. -Chim. Sin., 2009, 25(9): 1829 [张晓艳, 崔晓莉. 物理化学学报, 2009, 25(9): 1829]

    25. [25]

      25. Shrestha, N. K.; Nah, Y. C.; Tsuchiyab, H.; Schmuki, P. Chem. Commun., 2009: 2008

    26. [26]

      26. Elder, S. H.; Cot, F. M.; Su, Y.; Heald, S. M.; Tyryshkin, A. M.; Bowman, M. K.; Gao, Y.; Joly, A. G.; Balmer, M. L.; Kolwaite, A. C.; Magrini, K. A.; Blake, D. M. J. Am. Chem. Soc., 2000, 122: 5138

    27. [27]

      27. Du, Y. K.; Gan, Y. Q.; Hua, N. P.; Yang, P. Chemical Research and Application, 2004, 16(6): 802 [杜玉扣, 甘玉琴, 华南平, 杨平. 化学研究与应用, 2004, 16(6): 802]

    28. [28]

      28. Zhao, Q.; Jin, J. J.; Jiang, T. S.; Yin, H. B. Journal of the Chinese Ceramic Society, 2008, 36(S1): 1 [赵谦, 荆俊杰, 姜廷顺, 殷恒波. 硅酸盐学报, 2008, 36(S1): 1]

    29. [29]

      29. Tsujiko, A.; Itoh, H.; Kisumi, T.; Shiga, A.; Murakoshi, K.; Nakato, Y. J. Phys. Chem. B, 2002, 106: 5878

    30. [30]

      30. Kontos, A. I.; Likodimos, V.; Stergiopoulos, T.; Tsoukleris, D. S.; Falaras, P. Chem. Mater., 2009, 21: 662


  • 加载中
    1. [1]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    2. [2]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    3. [3]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    4. [4]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    5. [5]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    6. [6]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    7. [7]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    8. [8]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    9. [9]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    10. [10]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    11. [11]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    12. [12]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    13. [13]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    14. [14]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    15. [15]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    16. [16]

      Zhengli Hu Jia Wang Yi-Lun Ying Shaochuang Liu Hui Ma Wenwei Zhang Jianrong Zhang Yi-Tao Long . Exploration of Ideological and Political Elements in the Development History of Nanopore Electrochemistry. University Chemistry, 2024, 39(8): 344-350. doi: 10.3866/PKU.DXHX202401072

    17. [17]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    18. [18]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    19. [19]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    20. [20]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

Metrics
  • PDF Downloads(1867)
  • Abstract views(2649)
  • HTML views(19)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return