Citation: ZHANG Xiao-Chao, FAN Cai-Mei, LIANG Zhen-Hai, HAN Pei-De. Electronic Structures and Optical Properties of Ilmenite-Type Hexa nal ZnTiO3[J]. Acta Physico-Chimica Sinica, ;2011, 27(01): 47-51. doi: 10.3866/PKU.WHXB20110102 shu

Electronic Structures and Optical Properties of Ilmenite-Type Hexa nal ZnTiO3

  • Received Date: 2 August 2010
    Available Online: 17 November 2010

    Fund Project: 国家自然科学基金(20876104, 20771080) (20876104, 20771080)山西省科技攻关项目(20090311082)资助 (20090311082)

  • The electronic structures of ilmenite (IL)-type hexa nal ZnTiO3 were investigated using the generalized gradient approximation (GGA) and local density approximation (LDA) based on density functional theory (DFT). The optical properties of ZnTiO3 were also calculated by the LDA method. The calculated results were compared with experimental data. Results show that the structural parameters obtained by the LDA calculation are rather close to the experimental values. IL-type hexa nal ZnTiO3 is a kind of direct bandgap (Eg=3.11 eV) semiconductor material at the Z point in the Brillouin zone. An analysis of the density of states (DOS) and the Mulliken charge population clearly reveal that the Zn―O bond is a typical ionic bond whereas the Ti―O bond, which is similar to the Ti―O bond in perovskites ATiO3 (A=Sr, Pb, Ba), is covalent in character. Furthermore, the dielectric function, absorption spectrum, and refractive index were obtained and analyzed on the basis of electronic band structures and the DOS for radiation up to 50 eV.

  • 加载中
    1. [1]

      1. Dulin, F. H.; Rase, D. E. J. Am. Ceram. Soc., 1960, 43: 125

    2. [2]

      2. Bartram, S. F.; Slepetys, A. J. Am. Ceram. Soc., 1961, 44: 493

    3. [3]

      3. Chang, Y. S.; Chang, Y. H.; Chen, I. G.; Chen, G. J.; Chai, Y. L. J. Cryst. Growth, 2002, 43: 319

    4. [4]

      4. Botta, P. M.; Aglietti, E. F.; Lopez, J. M. P. J. Mater. Sci., 2004, 39: 5195

    5. [5]

      5. Kim, H. T.; Byun, J. D.; Kim, Y. Mater. Res. Bull., 1998, 33: 963

    6. [6]

      6. Kim, H. T.; Byun, J. D.; Kim, Y. Mater. Res. Bull., 1998, 33: 975

    7. [7]

      7. Obayashi, H.; Sakurai, Y.; Gejo, T. J. Solid State Chem., 1976, 17: 299

    8. [8]

      8. Chang, Y. S.; Chang, Y. H.; Chen, I. G.; Chen, G. J.; Chai, Y. L.; Fang, T. H.;Wu, S. A. Ceram. Int., 2004, 30: 2183

    9. [9]

      9. Chaouchi, A.; Aliouat, M.; Marinel, S.; Bourahla, H. Ceram. Int., 2007, 33: 245

    10. [10]

      10. Wang, S. F.; Lü, M. K.; Gu, F.; Song, C. F.; Dong, X.; Yuan, D. R.; Zhou, G. J.; Qi, Y. X. Inorg. Chem. Commun., 2003, 6: 185

    11. [11]

      11. Mojmhedi,W.; Abbasian, J. Energy Fuels, 1995, 9: 429

    12. [12]

      12. Chen, Z. X.; Derking, A.; Koot,W.; Van-Dijk, M. P. J. Catal., 1996, 161: 730

    13. [13]

      13. Huang, J. J.; Zhao, J. T.;Wei, X. F.;Wang, Y.; Bu, X. P. Powd. Technol., 2008, 180: 196

    14. [14]

      14. Kong, J. Z.; Li, A. D.; Zhai, H. F.; Li, H.; Yan, Q. Y.; Ma, J.;Wu, D. J. Hazard. Mater., 2009, 171: 918

    15. [15]

      15. Simin, J. D.; Mahjoub, A. R. J. Alloy. Compd., 2009, 486: 805

    16. [16]

      16. Cohen, R. E.; Krakauer, H. Phys. Rev. B, 1990, 42: 6416

    17. [17]

      17. Cohen, R. E. Nature, 1992, 358: 136

    18. [18]

      18. Tinte, S.; Stachiotti, M. G. Phys. Rev. B, 1998, 58: 11959

    19. [19]

      19. Piskunov, S.; Heifets, E.; Eglitis, R. I.; Borstel, G. Comput. Mater. Sci., 2004, 9: 165

    20. [20]

      20. Hosseini, S. M.; Movlarooy, T.; Kompany, A. Physica B, 2007, 391: 316

    21. [21]

      21. Zhang, Z. Y.; Yang, D. L.; Liu, Y. H.; Cao, H. B.; Shao, J. X.; Jing, Q. Acta Phys. -Chim. Sin., 2009, 25: 1731

    22. [22]

      [张子英, 杨德 林, 刘云虎, 曹海滨, 邵建新, 井群. 物理化学学报, 2009, 25: 1731]

    23. [23]

      22. Yun, J. N.; Zhang, Z. Y. Acta Phys. -Chim. Sin., 2010, 26: 751

    24. [24]

      [贠江妮, 张志勇. 物理化学学报, 2010, 26: 751]

    25. [25]

      23. Segall, M. D.; Lindan, P. L. D.; Probert, M. J. J. Phys. -Condes. Matter, 2002, 14: 2717

    26. [26]

      24. Payne, M. C.; Teter, M. P.; Allan, D. C. Rev. Mod. Phys., 1992, 64: 1045

    27. [27]

      25. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett., 1996, 77: 3865

    28. [28]

      26. Monkhorst, H. J.; Pack, J. D.; Freeman, D. L. Solid State Commun., 1979, 29: 723

    29. [29]

      27. Korba, S. A.; Meradji, H.; Ghemid, S.; Bouhafs, B. Comput. Mater. Sci., 2009, 44:1265

    30. [30]

      28. u, H. Y.; Gao, F. M.; Zhang, J.W. Comput. Mater. Sci, 2010, 49: 552

    31. [31]

      29. Ye, C.; Pan, S. S.; Teng, X. M. Appl. Phys. A, 2008, 90: 375

    32. [32]

      30. Jones, R. O.; Gunnarsson, O. Rev. Mod. Phys., 1989, 61: 689

    33. [33]

      31. Tell, J. S. Phys. Rev., 1956, 104: 1760

    34. [34]

      32. Sharma, S.; Ambrosch-Draxl, C.; Khan, M. A.; Blaha, P.; Auluck, S. Phys. Rev. B, 1999, 60: 8610

    35. [35]

      33. Puschnig, P.; Ambrosch-Draxl, C. Phys. Rev. B, 2002, 66: 165105

    36. [36]

      34. Ambrosch-Draxl, C.; Sofo, J. O. Comput. Phys. Commun., 2006, 175: 1

    37. [37]

      35. Delin, A.; Eriksson, O.; Ahuja, R.; Johansson, B. Phys. Rev. B, 1996, 54: 1673

    38. [38]

      36. Fox, M. Optical properties of solids. New York: Oxford University Press, 2001

    39. [39]

      37. Zhang, F. C.; Zhang, Z. Y.; Zhang, W. H.; Yan, J. F.; Yun, J. N. Acta Chim. Sin., 2008, 66: 1863

    40. [40]

      [张富春, 张志勇, 张威虎, 阎军 峰, 贠江妮. 化学学报, 2008, 66: 1863]


  • 加载中
    1. [1]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    2. [2]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    3. [3]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    4. [4]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    5. [5]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    6. [6]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    7. [7]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    8. [8]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    9. [9]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    10. [10]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    11. [11]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    12. [12]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    13. [13]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    14. [14]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    15. [15]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    16. [16]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    17. [17]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    18. [18]

      Haiping Wang . A Streamlined Method for Drawing Lewis Structures Using the Valence State of Outer Atoms. University Chemistry, 2024, 39(8): 383-388. doi: 10.12461/PKU.DXHX202401073

    19. [19]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    20. [20]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

Metrics
  • PDF Downloads(1743)
  • Abstract views(3119)
  • HTML views(27)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return