Citation:
ZHAN Chang-Guo. Development and Application of First-Principles Electronic Structure Approach for Molecules in Solution Based on Fully Polarizable Continuum Model[J]. Acta Physico-Chimica Sinica,
;2011, 27(01): 1-10.
doi:
10.3866/PKU.WHXB20110101
-
This is a brief review of some recent progress in the development and application of firstprinciples electronic structure approaches for molecules in solution. In particular, it accounts for the background, theoretical features, and representative applications of a recently developed, truly accurate continuum solvation model which is known as Surface and Volume Polarization for Electrostatics (SVPE) or Fully Polarizable Continuum Model (FPCM) in literature. The FPCM-based first-principles electronic structure approaches have been widely employed to study a variety of chemical and biochemical problems and serve as an integrated part of various computational protocols for rational drug design. Some perspective of the future of the FPCM-based first-principles electronic structure approaches is also given.
-
-
-
[1]
1. Rivail, J. L.; Rinaldi, D. Computational chemistry: reviews of current trends. Leszczynski, J. Ed. Singapore:World Scientific, 1996:Vol.1, p139
-
[2]
2. Orozco, M.; Luque, F. J. Chem. Rev., 2000, 100: 4187
-
[3]
3. Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev., 2005, 105: 2999
-
[4]
4. Cramer, C. J.;Truhlar, D. G.Acc. Chem. Res., 2009, 42: 493
-
[5]
5. Bandyopadhyay, P.; rdon, M. S. J. Chem. Phys., 2000, 113, 1104
-
[6]
6. Zhan, C. G.; Landry, D.W.; Ornstein, R. L. J. Am. Chem. Soc., 2000, 122: 1522
-
[7]
7. Zhan, C. G.; Landry, D.W.; Ornstein, R. L. J. Am. Chem. Soc., 2000, 122: 2621
-
[8]
8. Gronert, S.; Pratt, L. M.; Mogali, S. J. Am. Chem. Soc., 2001, 123: 3081
-
[9]
9. Clementi, E. Computational aspects of large chemical systems. Berlin: Springer, 1980
-
[10]
10. Gao, J.; Xia, X. F. Science, 1992, 258: 631
-
[11]
11. Vreven,T.; Morokuma, K. J. Chem. Phys., 2000, 113: 2969
-
[12]
12. Cui, Q.; Karplus, M. J. Chem. Phys., 2000, 112: 1133
-
[13]
13. Florian, J.;Warshel,A. J. Phys. Chem. B, 1997, 101: 5583
-
[14]
14. Broo,A.; Pearl, G.; Zerner, M. C. J. Phys. Chem.A, 1997, 101: 2478
-
[15]
15. Jung,Y.; Ho Choi, C. H.; rdon, M. S. J. Phys. Chem. B, 2001, 105: 4039
-
[16]
16. Hori,T.;Takahashi, H.; Nakano, M.; Nitta,T.;Yang,W. Chem. Phys. Lett., 2006, 419: 240
-
[17]
17. Acevedo, O.; Jorgensen,W. L. Acc. Chem. Res., 2010, 43: 142
-
[18]
18. Tomasi, J.; Persico, M. Chem. Rev., 1994, 94: 2027
-
[19]
19. Cramer, C. J.;Truhlar, D. G. Chem. Rev., 1999, 99: 2161
-
[20]
20. Kinoshita, M.; Hirata, F. J. Chem. Phys., 1996, 104: 8807
-
[21]
21. Palmer, D. S.; Sergiievskyi,V. P.; Jensen, F.; Fedorov, M.V. J. Chem. Phys., 2010, 133: 044104
-
[22]
22. Miyata,T.; Ikuta,Y.; Hirata, F. J. Chem. Phys., 2010, 133: 044114
-
[23]
23. Chen,W.; rdon, M. S. J. Chem. Phys., 1996, 105: 11081
-
[24]
24. Kerdcharoen,T.; Morokuma, K. Chem. Phys. Lett., 2002, 355: 257
-
[25]
25. Kerdcharoen,T.; Morokuma, K. J. Chem. Phys., 2003, 118: 8856
-
[26]
26. Hou, G.; Zhu, X.; Cui, Q. J. Chem. Theory Comput., 2010, 6: 2303
-
[27]
27. Heard, G. L.;Yates, B. F. J. Comput. Chem., 1996, 17: 1444
-
[28]
28. Cossi, M.; Barone,V.; Cammi, R.;Tomasi, J. Chem. Phys. Lett., 1996, 255: 327
-
[29]
29. Foresman, J. B.; Keith,T. A.;Wiberg, K. B.; Snoonian, J.; Frisch, M. J. J. Phys. Chem., 1996, 100: 16098
-
[30]
30. Cancès, E.; Mennucci, B.;Tomasi, J. J. Chem. Phys., 1997, 107: 3032
-
[31]
31. Tomasi, J.; Mennucci, B.; Cances, E. J. Mol. Struct. -Theochem, 1999, 464: 211
-
[32]
32. Klamt,A.; Jonas,V. J. Chem. Phys., 1996, 105: 9972
-
[33]
33. Barone,V.; Cossi, M., J. Phys. Chem.A, 1998, 102: 1995
-
[34]
34. Zhan, C. G.; Bentley, J.; Chipman, D. M. J. Chem. Phys., 1998, 108: 177
-
[35]
35. Zhan, C. G.; Chipman, D. M. J. Chem. Phys., 1998, 109: 10543
-
[36]
36. Zhan, C. G.; Chipman, D. M. J. Chem. Phys., 1999, 110: 1611
-
[37]
37. Zhan, C. G.; Landry, D.W.; Ornstein, R. L. J. Phys. Chem.A, 2000, 104: 7672
-
[38]
38. Zhan, C. G.; Norberto de Souza, O.; Rittenhouse, R.; Ornstein, R. L. J. Am. Chem. Soc., 1999, 121: 7279
-
[39]
39. Zhan, C. G.; Zheng, F. J. Am. Chem. Soc., 2001, 123: 2835
-
[40]
40. Zhan, C. G.; Landry, D.W. J. Phys. Chem.A, 2001, 105: 1296
-
[41]
41. Zhan, C. G.; Niu, S.; Ornstein, R. L. J. Chem. Soc. Perkin Trans. 2, 2001: 23
-
[42]
42. Zheng, F.; Zhan, C. G.; Ornstein, R. L. J. Chem. Soc. Perkin Trans. 2, 2001: 2355
-
[43]
43. Zhan, C. G.; Dixon, D.A. J. Phys. Chem.A, 2001, 105: 11534
-
[44]
44. Dixon, D.A.; Feller, D.; Zhan, C. G.; Francisco, J. S. J. Phys. Chem. A, 2002, 106: 3191
-
[45]
45. Zheng, F.; Zhan, C. G.; Ornstein, R. L. J. Phys. Chem. B, 2002, 106: 717
-
[46]
46. Zhan, C. G.; Dixon, D.A. J. Phys. Chem.A, 2002, 106: 9737
-
[47]
47. Zhan, C. G.; Dixon, D.A.; Sabri, M. I.; Kim, M. S.; Spencer, P. S. J. Am. Chem. Soc., 2002, 124: 2744
-
[48]
48. Zhan, C. G.; Dixon, D.A. J. Phys. Chem. B, 2003, 107: 4403
-
[49]
49. Dixon, D.A.; Feller, D.; Zhan, C. G.; Francisco, S. F. Int. J. Mass Spectrom., 2003, 227: 421
-
[50]
50. Zhan, C. G.; Dixon, D.A.; Spencer, P. S. J. Phys. Chem. B, 2003, 107: 2853
-
[51]
51. Chen, X.; Zhan, C. G. J. Phys. Chem.A, 2004, 108: 3789
-
[52]
52. Chen, X.; Zhan, C. G. J. Phys. Chem.A, 2004, 108: 6407
-
[53]
53. Zhan, C. G.; Spencer, P. S.; Dixon, D.A. J. Phys. Chem. B, 2004, 108: 6098
-
[54]
54. Zhan, C. G.; Dixon, D.A. J. Phys. Chem.A, 2004, 108: 2020
-
[55]
55. Zhan, C. G.; Deng, S. X.; Skiba, J. G.; Hayes, B.A.;Tschampel, S. M.; Shields, G. C.; Landry, D.W. J. Comput. Chem., 2005, 26: 980
-
[56]
56. Xiong,Y.; Zhan, C. G. J. Phys. Chem.A, 2006, 110: 12644
-
[57]
57. Lu, H.-T.; Chen, X.; Zhan, C. G. J. Phys. Chem. B, 2007, 111: 10599
-
[58]
58. Chen, X.; Zhan, C. G. J. Phys. Chem. B, 2008, 112: 16851
-
[59]
59. Zheng, F.; Dwoskin, L. P.; Crooks, P. A.; Zhan, C. G. Theo. Chem. Acc., 2009, 124: 269
-
[60]
60. Chipman, D. M. J. Chem. Phys., 1999, 110: 8012
-
[61]
61. Chipman, D. M. J. Chem. Phys., 2000, 112: 5558
-
[62]
62. Chipman, D. M. Theo. Chem. Acta, 2002, 107: 80
-
[63]
63. Chipman, D. M. Theo. Chem. Acta, 2004, 111: 61
-
[64]
64. Xiong,Y.; Zhan, C. G. J. Org. Chem., 2004, 69: 8451
-
[65]
65. Dejaegere, A.; Karplus, M. J. Am. Chem. Soc., 1993, 115: 5316
-
[66]
66. Schmidt, M.W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S.T.; rdon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. J.;Windus, T. L.; Dupuis, M.; Mont mery, J. A. J. Comput. Chem., 1993, 14: 1347
-
[67]
67. Vilkas, M. J.; Zhan, C. G. J. Chem. Phys., 2008, 129: 194109
-
[68]
68. Frisch, M. J.;Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03. Revision C.02.Wallingford, CT: Gaussian Inc., 2004
-
[69]
69. Cramer, C. J.;Truhlar, D. G.Acc. Chem. Res., 2008, 41: 760
-
[70]
70. Liu, J.; Kelly, C. P.; ren,A. C.; Marenich,A.V.; Cramer, C. J.; Truhlar, D. G.; Zhan, C. G. J. Chem. Theory Comput., 2010, 6: 1109
-
[71]
71. Kelly, C. P.; Cramer, C. J.;Truhlar, D. G. J. Chem. Theory Comput., 2005, 1: 1133
-
[72]
72. ?lebocka-Tilk,H.; Sauriol, F.;Monette,M.;Brown,R. S. Can. J. Chem., 2002, 80: 1343
-
[73]
73. Bolton, P. D.Aust. J. Chem., 1966, 19: 1013
-
[74]
74. Bolton, P. D.; Jackson, G. L. Aust. J. Chem., 1971, 24: 969
-
[75]
75. Guthrie, J. P. J. Am. Chem. Soc., 1974, 96: 3608
-
[76]
76. Conway, B. E. Ionic hydration in chemistry and biophysics. New York: Elsevier, 1981
-
[77]
77. Marcus,Y. Ion salvation. NewYork:Wiley, 1985
-
[78]
78. Hille, B. Ionic channels of excitable membranes. 2nd ed. Sunderland, MA: Sinauer, 1992
-
[79]
79. Franks, N. P.; Lieb,W. R. Nature, 1997, 389: 334
-
[80]
80. Gunshin, H.; Mackenzie, B.; Berger, U.V.; Gunshin,Y.; Romero, M. F.; Boron,W. F.; Nussberger, S.; llan, J. L.; Hediger, M.A. Nature, 1997, 388: 482
-
[81]
81. Doyle, D.A.; Cabral, J. M.; Pfuetzner, R.A.; Kuo,A.; Gulbis, J. M.; Cohen, S. L.; Chait, B.T.; MacKinnon, R. Science, 1998, 280: 69
-
[82]
82. MacKinnon, R.; Cohen, S. L.; Kuo,A.; Lee, A.; Chait, B.T. Science, 1998, 280: 106
-
[83]
83. Nakamura,T.;Akutagawa,T.; Honda, K.; Underhill,A. E.; Coomber,A.T.; Friend, R. H. Nature, 1998, 394: 159
-
[84]
84. Roux, B.; MacKinnon, R. Science, 1999, 285: 100
-
[85]
85. Wu, K.; Iedema, M. J.; Cowin, J. P. Science, 1999, 286: 2482
-
[86]
86. Anson, L. Nature, 1999, 402: 739
-
[87]
87. MacFarlane, D. R.; Huang, J.; Forsyth, M. Nature, 1999, 402: 792
-
[88]
88. Kolbe, M.; Besir, H.; Essen, L. O.; Oesterhelt, D. Science, 2000, 288: 1390
-
[89]
89. Weber, J. M.; Kelley, J. A.; Nielsen, S. B.;Ayotte, P.; Johnson, M.A. Science, 2000, 287: 2461
-
[90]
90. Aqvist, J.; Luzhkov,V. Nature, 2000, 404: 881
-
[91]
91. Williams, K.A. Nature, 2000, 403: 112
-
[92]
92. Pasquarello, A.; Petri, I.; Salmon, P. S.; Parisel, O.; Car, R.; Tóth, é.; Powell, D. H.; Fischer, H. E.; Helm, L.; Merbach,A. Science, 2001, 291: 856
-
[93]
93. Kielpinski, D.; Meyer,V.; Rowe, M.A.; Sackett, C.A.; Itano,W. M.; Monroe, C.;Wineland, D. J. Science, 2001, 291: 1013
-
[94]
94. Kropman, M. F.; Bakker, H. J. Science, 2001, 291: 2118
-
[95]
95. Mejias, J. A.; La , S. J. Chem. Phys., 2000, 113: 7306
-
[96]
96. Friedman, H. L.; Krishnan,V.V.Water:Acomprehensive treatise. NewYork: Plenum, 1973
-
[97]
97. Zhu,T.; Li, J.; Hawkins, G. D.; Cramer, C. J.;Truhlar, D. G. J. Chem. Phys. 1998, 109: 9117
-
[98]
98. Tissandier, M. D.; Cowen, K.A.; Feng,W.Y.; Gundlach, E.; Cohen, M. H.; Earhart,A. D.; Coe, J.V. J. Phys. Chem.A, 1998, 102: 7787; 1998, 102: 9308 (correction)
-
[99]
99. Mallard,W. G.; Linstrom, P. J. Eds. NIST chemistry webbook, NIST standard reference database number 69, February 2000. Gaithersburg, MD: National Institute of Standards andTechnology, 2000 (http://webbook.nist. v)
-
[100]
100. Ruscic, B.; Feller, D.; Dixon, D.A.; Peterson, K.A.; Harding, L. B.;Asher, R. L.;Wagner,A. F. J. Phys. Chem.A, 2001, 105: 1
-
[101]
101. Ruscic, B.;Wagner,A. F.; Harding, L. B.;Asher, R. L.; Feller, D.; Dixon, D.A.; Peterson, K.A.; Song,Y.; Qian, X.; Ng, C.Y.; Liu, J.; Chen,W.; Schwenke, D.W. J. Phys. Chem.A, 2002, 106: 2727
-
[102]
102. Huang, X.; Zheng, F.; Crooks, P. A.; Dwoskin, L. P.; Zhan, C. G. J. Am. Chem. Soc., 2005, 127: 14401
-
[103]
103. Huang, X.; Zheng, F.; Chen, X.; Crooks, P. A.; Dwoskin, L. P.; Zhan, C. G. J. Med. Chem., 2006, 49: 7661
-
[104]
104. Huang, X.; Zheng, F.; Stokes, C.; Papke, R. L.; Zhan, C. G. J. Med. Chem., 2008, 51: 6293
-
[105]
105. Huang, X.; Zheng, F.; Zhan, C. G. J. Am. Chem. Soc., 2008, 130: 16691
-
[106]
106. Pan,Y.; Gao, D.; Zhan, C. G. J. Am. Chem. Soc., 2008, 130: 5140
-
[107]
107. Zhan, C. G.; Zheng, F.; Landry, D.W. J. Am. Chem. Soc., 2003, 125: 2462
-
[108]
108. Hamza,A.; Cho, H.;Tai, H. H.; Zhan, C. G. J. Phys. Chem. B, 2005, 109: 4776
-
[109]
109. Gao, D.; Zhan, C. G. J. Phys. Chem. B, 2005, 109: 23070
-
[110]
110. Zhan, C. G.; Gao, D. Biophysical Journal, 2005, 89: 3863
-
[111]
111. Liu, J.; Hamza,A.; Zhan, C. G. J. Am. Chem. Soc., 2009, 131: 11964
-
[112]
112. Gao, D.; Zhan, C. G. Proteins, 2006, 62: 99
-
[113]
113. Pan,Y.; Gao, D.;Yang,W.; Cho, H.;Yang, G. F.;Tai, H. H.; Zhan, C. G. Proc. Natl. Acad. Sci. U. S.A., 2005, 102: 16656
-
[114]
114. Gao, D.; Cho, H.;Yang,W.; Pan,Y.;Yang, G. F.;Tai, H. H.; Zhan, C. G.Angew. Chem. Int. Edit., 2006, 45: 653
-
[115]
115. Pan,Y.; Gao, D.;Yang,W.; Cho, H.; Zhan, C. G. J. Am. Chem. Soc., 2007, 129: 13537
-
[116]
116. Zheng, F.;Yang,W.; Ko, M. C.; Liu, J.; Cho, H.; Gao, D.;Tong, M.;Tai, H.-H.;Woods, J. H.; Zhan, C. G. J. Am. Chem. Soc., 2008, 130: 12148
-
[117]
117. Yang,W.; Pan,Y.; Fang, L.; Gao, D.; Zheng, F.; Zhan, C. G. J. Phys. Chem. B, 2010, 114: 10889
-
[118]
118. Yang,W.; Pan,Y.; Zheng, F.; Cho, H.;Tai, H. H.; Zhan, C. G. Biophysical Journal, 2009, 96: 1931
-
[119]
119. Zheng, F.; Zhan, C. G. Org. Biomol. Chem., 2008, 6: 836
-
[120]
120. Zheng, F.; Zhan, C. G. J. Computer-Aided Mol. Design, 2008, 22: 661
-
[121]
121. Brim, R. L.; Nance, M. R.;Youngstrom, D.W.; Narasimhan, D.; Zhan, C. G.;Tesmer, J. J. G.; Sunahara, R. K.;Woods, J. H. Mol. Pharmacol., 2010, 77: 593
-
[122]
122. Yang,W.; Xue, L.; Fang, L.; Zhan, C. G. Chemico-Biological Interactions, 2010, 187: 148
-
[123]
123. Gao, D.; Narasimhan, D. L.; Macdonald, J.; Ko, M. C.; Landry, D. W.;Woods, J. H.; Sunahara, R. K.; Zhan, C. G. Mol. Pharmacol., 2009, 75: 318
-
[124]
124. Zheng, F.; Zhan, C. G. Future Med. Chem., 2009, 1: 515
-
[125]
125. Collins, G.T.; Brim, R. L.; Narasimhan, D.; Ko, M. C.; Sunahara, R. K.; Zhan, C. G.;Woods, J. H. J. Pharm. Exp. Ther., 2009, 331: 445
-
[126]
126. Koca, J.; Zhan, C. G.; Rittenhouse, R.; Ornstein, R. L. J. Am. Chem. Soc., 2001, 123: 817
-
[127]
127. Xiong,Y.; Lu, H.; Li,Y.;Yang, G.; Zhan, C. G. Biophysical Journal, 2006, 91: 1858
-
[128]
128. Xiong,Y.; Lu, H.T.; Zhan, C. G. J. Comput. Chem., 2008, 29: 1259
-
[129]
129. Lu, H.; ren,A. C.; Zhan, C. G. J. Phys. Chem. B, 2010, 114: 7022
-
[1]
-
-
-
[1]
Xi Tang , Chunlei Zhu , Yulu Yang , Shihan Qi , Mengqiu Cai , Abdullah N. Alodhayb , Jianmin Ma . Additive regulating Li+ solvation structure to construct dual LiF−rich electrode electrolyte interphases for sustaining 4.6 V Li||LiCoO2 batteries. Chinese Chemical Letters, 2024, 35(12): 110014-. doi: 10.1016/j.cclet.2024.110014
-
[2]
Haiying Lu , Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334
-
[3]
Liang Ma , Zhou Li , Zhiqiang Jiang , Xiaofeng Wu , Shixin Chang , Sónia A. C. Carabineiro , Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416
-
[4]
Jia JI , Zhaoyang GUO , Wenni LEI , Jiawei ZHENG , Haorong QIN , Jiahong YAN , Yinling HOU , Xiaoyan XIN , Wenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344
-
[5]
Shiqi Peng , Yongfang Rao , Tan Li , Yufei Zhang , Jun-ji Cao , Shuncheng Lee , Yu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219
-
[6]
Hongyang Li , Yue Liu , Xiuwen Wang , Haijing Yan , Guimin Wang , Dongxu Wang , Yilong Wang , Shuo Yang , Yanqing Jiao . Morphology engineering and electronic structure remodeling of manganese-incorporated VN for boosting urea-assisted energy-saving hydrogen production. Chinese Chemical Letters, 2025, 36(6): 110042-. doi: 10.1016/j.cclet.2024.110042
-
[7]
Bingwei Wang , Yihong Ding , Xiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721
-
[8]
Chen Chen , Jinzhou Zheng , Chaoqin Chu , Qinkun Xiao , Chaozheng He , Xi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739
-
[9]
Shenhao QIU , Qingquan XIAO , Huazhu TANG , Quan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104
-
[10]
Tao Wei , Jiahao Lu , Pan Zhang , Qi Zhang , Guang Yang , Ruizhi Yang , Daifen Chen , Qian Wang , Yongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122
-
[11]
Jun-Yang Wang , Yu-Qing Wei , Qing-Ning Wang , Zhi-Guo Wang , Rui Hong , Lisha Yi , Ping Xu , Jia-Zhuang Xu , Zhong-Ming Li , Baisong Zhao . Mucus-inspired lubricative antibacterial coating to reduce airway complications in an intubation cynomolgus monkey model. Chinese Chemical Letters, 2025, 36(8): 110559-. doi: 10.1016/j.cclet.2024.110559
-
[12]
Jun-Ting Mo , Zheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360
-
[13]
Meiling Xu , Xinyang Li , Pengyuan Liu , Junjun Liu , Xiao Han , Guodong Chai , Shuangling Zhong , Bai Yang , Liying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860
-
[14]
Xinyuan Li , Zhuozhu Li , Wenzhong Huang , Jiantao Li , Wei Zhang , Shihao Feng , Hao Fan , Zhuo Chen , Sungsik Lee , Congcong Cai , Liang Zhou . Solvent-free synthesis of Co single atom and nanocluster decorated N-doped carbon for efficient oxygen reduction. Chinese Chemical Letters, 2025, 36(9): 110716-. doi: 10.1016/j.cclet.2024.110716
-
[15]
Zhenguo Zhang , Lanyang Li , Xinlong Zong , Yongheng Lv , Shuanglei Liu , Liang Ji , Xuefei Zhao , Zhenhua Jia , Teck-Peng Loh . "Water" accelerated B(C6F5)3-catalyzed Mukaiyama-aldol reaction: Outer-sphere activation model. Chinese Chemical Letters, 2025, 36(7): 110504-. doi: 10.1016/j.cclet.2024.110504
-
[16]
Hongen Cao , Xinrui Xiao , Xu Zhang , Yiyang Zhang , Lei Yu . Element Transfer Reaction theory: Scientific connotation and its applications in chemical industry. Chinese Chemical Letters, 2025, 36(9): 110924-. doi: 10.1016/j.cclet.2025.110924
-
[17]
Peng Wang , Daijie Deng , Suqin Wu , Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199
-
[18]
Shuli Wang , Xuemin Kong , Siting Cai , Yunshu Luo , Yuxuan Gu , Xiaotong Fan , Guolong Chen , Xiao Yang , Zhong Chen , Yue Lin . Solvent engineering in perovskite nanocrystal colloid inks for super-fine electrohydrodynamic inkjet printing of color conversion microstructures in micro-LED displays. Chinese Chemical Letters, 2025, 36(8): 110976-. doi: 10.1016/j.cclet.2025.110976
-
[19]
Xu Huang , Kai-Yin Wu , Chao Su , Lei Yang , Bei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720
-
[20]
Fanxin Kong , Hongzhi Wang , Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287
-
[1]
Metrics
- PDF Downloads(1639)
- Abstract views(2325)
- HTML views(5)