Citation: ZHAN Chang-Guo. Development and Application of First-Principles Electronic Structure Approach for Molecules in Solution Based on Fully Polarizable Continuum Model[J]. Acta Physico-Chimica Sinica, ;2011, 27(01): 1-10. doi: 10.3866/PKU.WHXB20110101 shu

Development and Application of First-Principles Electronic Structure Approach for Molecules in Solution Based on Fully Polarizable Continuum Model

  • Received Date: 16 September 2010
    Available Online: 15 November 2010

    Fund Project: The project was supported by the National Institutes of Health (grantsR01DA013930,R01DA025100,R01DA021416, andRC1MH088480) (grantsR01DA013930,R01DA025100,R01DA021416, andRC1MH088480) s Drug Discovery Foundation (ADDA) (ADDA)Institute for the Study ofAging (ISOA) (ISOA)

  • This is a brief review of some recent progress in the development and application of firstprinciples electronic structure approaches for molecules in solution. In particular, it accounts for the background, theoretical features, and representative applications of a recently developed, truly accurate continuum solvation model which is known as Surface and Volume Polarization for Electrostatics (SVPE) or Fully Polarizable Continuum Model (FPCM) in literature. The FPCM-based first-principles electronic structure approaches have been widely employed to study a variety of chemical and biochemical problems and serve as an integrated part of various computational protocols for rational drug design. Some perspective of the future of the FPCM-based first-principles electronic structure approaches is also given.

  • 加载中
    1. [1]

      1. Rivail, J. L.; Rinaldi, D. Computational chemistry: reviews of current trends. Leszczynski, J. Ed. Singapore:World Scientific, 1996:Vol.1, p139

    2. [2]

      2. Orozco, M.; Luque, F. J. Chem. Rev., 2000, 100: 4187

    3. [3]

      3. Tomasi, J.; Mennucci, B.; Cammi, R. Chem. Rev., 2005, 105: 2999

    4. [4]

      4. Cramer, C. J.;Truhlar, D. G.Acc. Chem. Res., 2009, 42: 493

    5. [5]

      5. Bandyopadhyay, P.; rdon, M. S. J. Chem. Phys., 2000, 113, 1104

    6. [6]

      6. Zhan, C. G.; Landry, D.W.; Ornstein, R. L. J. Am. Chem. Soc., 2000, 122: 1522

    7. [7]

      7. Zhan, C. G.; Landry, D.W.; Ornstein, R. L. J. Am. Chem. Soc., 2000, 122: 2621

    8. [8]

      8. Gronert, S.; Pratt, L. M.; Mogali, S. J. Am. Chem. Soc., 2001, 123: 3081

    9. [9]

      9. Clementi, E. Computational aspects of large chemical systems. Berlin: Springer, 1980

    10. [10]

      10. Gao, J.; Xia, X. F. Science, 1992, 258: 631

    11. [11]

      11. Vreven,T.; Morokuma, K. J. Chem. Phys., 2000, 113: 2969

    12. [12]

      12. Cui, Q.; Karplus, M. J. Chem. Phys., 2000, 112: 1133

    13. [13]

      13. Florian, J.;Warshel,A. J. Phys. Chem. B, 1997, 101: 5583

    14. [14]

      14. Broo,A.; Pearl, G.; Zerner, M. C. J. Phys. Chem.A, 1997, 101: 2478

    15. [15]

      15. Jung,Y.; Ho Choi, C. H.; rdon, M. S. J. Phys. Chem. B, 2001, 105: 4039

    16. [16]

      16. Hori,T.;Takahashi, H.; Nakano, M.; Nitta,T.;Yang,W. Chem. Phys. Lett., 2006, 419: 240

    17. [17]

      17. Acevedo, O.; Jorgensen,W. L. Acc. Chem. Res., 2010, 43: 142

    18. [18]

      18. Tomasi, J.; Persico, M. Chem. Rev., 1994, 94: 2027

    19. [19]

      19. Cramer, C. J.;Truhlar, D. G. Chem. Rev., 1999, 99: 2161

    20. [20]

      20. Kinoshita, M.; Hirata, F. J. Chem. Phys., 1996, 104: 8807

    21. [21]

      21. Palmer, D. S.; Sergiievskyi,V. P.; Jensen, F.; Fedorov, M.V. J. Chem. Phys., 2010, 133: 044104

    22. [22]

      22. Miyata,T.; Ikuta,Y.; Hirata, F. J. Chem. Phys., 2010, 133: 044114

    23. [23]

      23. Chen,W.; rdon, M. S. J. Chem. Phys., 1996, 105: 11081

    24. [24]

      24. Kerdcharoen,T.; Morokuma, K. Chem. Phys. Lett., 2002, 355: 257

    25. [25]

      25. Kerdcharoen,T.; Morokuma, K. J. Chem. Phys., 2003, 118: 8856

    26. [26]

      26. Hou, G.; Zhu, X.; Cui, Q. J. Chem. Theory Comput., 2010, 6: 2303

    27. [27]

      27. Heard, G. L.;Yates, B. F. J. Comput. Chem., 1996, 17: 1444

    28. [28]

      28. Cossi, M.; Barone,V.; Cammi, R.;Tomasi, J. Chem. Phys. Lett., 1996, 255: 327

    29. [29]

      29. Foresman, J. B.; Keith,T. A.;Wiberg, K. B.; Snoonian, J.; Frisch, M. J. J. Phys. Chem., 1996, 100: 16098

    30. [30]

      30. Cancès, E.; Mennucci, B.;Tomasi, J. J. Chem. Phys., 1997, 107: 3032

    31. [31]

      31. Tomasi, J.; Mennucci, B.; Cances, E. J. Mol. Struct. -Theochem, 1999, 464: 211

    32. [32]

      32. Klamt,A.; Jonas,V. J. Chem. Phys., 1996, 105: 9972

    33. [33]

      33. Barone,V.; Cossi, M., J. Phys. Chem.A, 1998, 102: 1995

    34. [34]

      34. Zhan, C. G.; Bentley, J.; Chipman, D. M. J. Chem. Phys., 1998, 108: 177

    35. [35]

      35. Zhan, C. G.; Chipman, D. M. J. Chem. Phys., 1998, 109: 10543

    36. [36]

      36. Zhan, C. G.; Chipman, D. M. J. Chem. Phys., 1999, 110: 1611

    37. [37]

      37. Zhan, C. G.; Landry, D.W.; Ornstein, R. L. J. Phys. Chem.A, 2000, 104: 7672

    38. [38]

      38. Zhan, C. G.; Norberto de Souza, O.; Rittenhouse, R.; Ornstein, R. L. J. Am. Chem. Soc., 1999, 121: 7279

    39. [39]

      39. Zhan, C. G.; Zheng, F. J. Am. Chem. Soc., 2001, 123: 2835

    40. [40]

      40. Zhan, C. G.; Landry, D.W. J. Phys. Chem.A, 2001, 105: 1296

    41. [41]

      41. Zhan, C. G.; Niu, S.; Ornstein, R. L. J. Chem. Soc. Perkin Trans. 2, 2001: 23

    42. [42]

      42. Zheng, F.; Zhan, C. G.; Ornstein, R. L. J. Chem. Soc. Perkin Trans. 2, 2001: 2355

    43. [43]

      43. Zhan, C. G.; Dixon, D.A. J. Phys. Chem.A, 2001, 105: 11534

    44. [44]

      44. Dixon, D.A.; Feller, D.; Zhan, C. G.; Francisco, J. S. J. Phys. Chem. A, 2002, 106: 3191

    45. [45]

      45. Zheng, F.; Zhan, C. G.; Ornstein, R. L. J. Phys. Chem. B, 2002, 106: 717

    46. [46]

      46. Zhan, C. G.; Dixon, D.A. J. Phys. Chem.A, 2002, 106: 9737

    47. [47]

      47. Zhan, C. G.; Dixon, D.A.; Sabri, M. I.; Kim, M. S.; Spencer, P. S. J. Am. Chem. Soc., 2002, 124: 2744

    48. [48]

      48. Zhan, C. G.; Dixon, D.A. J. Phys. Chem. B, 2003, 107: 4403

    49. [49]

      49. Dixon, D.A.; Feller, D.; Zhan, C. G.; Francisco, S. F. Int. J. Mass Spectrom., 2003, 227: 421

    50. [50]

      50. Zhan, C. G.; Dixon, D.A.; Spencer, P. S. J. Phys. Chem. B, 2003, 107: 2853

    51. [51]

      51. Chen, X.; Zhan, C. G. J. Phys. Chem.A, 2004, 108: 3789

    52. [52]

      52. Chen, X.; Zhan, C. G. J. Phys. Chem.A, 2004, 108: 6407

    53. [53]

      53. Zhan, C. G.; Spencer, P. S.; Dixon, D.A. J. Phys. Chem. B, 2004, 108: 6098

    54. [54]

      54. Zhan, C. G.; Dixon, D.A. J. Phys. Chem.A, 2004, 108: 2020

    55. [55]

      55. Zhan, C. G.; Deng, S. X.; Skiba, J. G.; Hayes, B.A.;Tschampel, S. M.; Shields, G. C.; Landry, D.W. J. Comput. Chem., 2005, 26: 980

    56. [56]

      56. Xiong,Y.; Zhan, C. G. J. Phys. Chem.A, 2006, 110: 12644

    57. [57]

      57. Lu, H.-T.; Chen, X.; Zhan, C. G. J. Phys. Chem. B, 2007, 111: 10599

    58. [58]

      58. Chen, X.; Zhan, C. G. J. Phys. Chem. B, 2008, 112: 16851

    59. [59]

      59. Zheng, F.; Dwoskin, L. P.; Crooks, P. A.; Zhan, C. G. Theo. Chem. Acc., 2009, 124: 269

    60. [60]

      60. Chipman, D. M. J. Chem. Phys., 1999, 110: 8012

    61. [61]

      61. Chipman, D. M. J. Chem. Phys., 2000, 112: 5558

    62. [62]

      62. Chipman, D. M. Theo. Chem. Acta, 2002, 107: 80

    63. [63]

      63. Chipman, D. M. Theo. Chem. Acta, 2004, 111: 61

    64. [64]

      64. Xiong,Y.; Zhan, C. G. J. Org. Chem., 2004, 69: 8451

    65. [65]

      65. Dejaegere, A.; Karplus, M. J. Am. Chem. Soc., 1993, 115: 5316

    66. [66]

      66. Schmidt, M.W.; Baldridge, K. K.; Boatz, J. A.; Elbert, S.T.; rdon, M. S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. J.;Windus, T. L.; Dupuis, M.; Mont mery, J. A. J. Comput. Chem., 1993, 14: 1347

    67. [67]

      67. Vilkas, M. J.; Zhan, C. G. J. Chem. Phys., 2008, 129: 194109

    68. [68]

      68. Frisch, M. J.;Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03. Revision C.02.Wallingford, CT: Gaussian Inc., 2004

    69. [69]

      69. Cramer, C. J.;Truhlar, D. G.Acc. Chem. Res., 2008, 41: 760

    70. [70]

      70. Liu, J.; Kelly, C. P.; ren,A. C.; Marenich,A.V.; Cramer, C. J.; Truhlar, D. G.; Zhan, C. G. J. Chem. Theory Comput., 2010, 6: 1109

    71. [71]

      71. Kelly, C. P.; Cramer, C. J.;Truhlar, D. G. J. Chem. Theory Comput., 2005, 1: 1133

    72. [72]

      72. ?lebocka-Tilk,H.; Sauriol, F.;Monette,M.;Brown,R. S. Can. J. Chem., 2002, 80: 1343

    73. [73]

      73. Bolton, P. D.Aust. J. Chem., 1966, 19: 1013

    74. [74]

      74. Bolton, P. D.; Jackson, G. L. Aust. J. Chem., 1971, 24: 969

    75. [75]

      75. Guthrie, J. P. J. Am. Chem. Soc., 1974, 96: 3608

    76. [76]

      76. Conway, B. E. Ionic hydration in chemistry and biophysics. New York: Elsevier, 1981

    77. [77]

      77. Marcus,Y. Ion salvation. NewYork:Wiley, 1985

    78. [78]

      78. Hille, B. Ionic channels of excitable membranes. 2nd ed. Sunderland, MA: Sinauer, 1992

    79. [79]

      79. Franks, N. P.; Lieb,W. R. Nature, 1997, 389: 334

    80. [80]

      80. Gunshin, H.; Mackenzie, B.; Berger, U.V.; Gunshin,Y.; Romero, M. F.; Boron,W. F.; Nussberger, S.; llan, J. L.; Hediger, M.A. Nature, 1997, 388: 482

    81. [81]

      81. Doyle, D.A.; Cabral, J. M.; Pfuetzner, R.A.; Kuo,A.; Gulbis, J. M.; Cohen, S. L.; Chait, B.T.; MacKinnon, R. Science, 1998, 280: 69

    82. [82]

      82. MacKinnon, R.; Cohen, S. L.; Kuo,A.; Lee, A.; Chait, B.T. Science, 1998, 280: 106

    83. [83]

      83. Nakamura,T.;Akutagawa,T.; Honda, K.; Underhill,A. E.; Coomber,A.T.; Friend, R. H. Nature, 1998, 394: 159

    84. [84]

      84. Roux, B.; MacKinnon, R. Science, 1999, 285: 100

    85. [85]

      85. Wu, K.; Iedema, M. J.; Cowin, J. P. Science, 1999, 286: 2482

    86. [86]

      86. Anson, L. Nature, 1999, 402: 739

    87. [87]

      87. MacFarlane, D. R.; Huang, J.; Forsyth, M. Nature, 1999, 402: 792

    88. [88]

      88. Kolbe, M.; Besir, H.; Essen, L. O.; Oesterhelt, D. Science, 2000, 288: 1390

    89. [89]

      89. Weber, J. M.; Kelley, J. A.; Nielsen, S. B.;Ayotte, P.; Johnson, M.A. Science, 2000, 287: 2461

    90. [90]

      90. Aqvist, J.; Luzhkov,V. Nature, 2000, 404: 881

    91. [91]

      91. Williams, K.A. Nature, 2000, 403: 112

    92. [92]

      92. Pasquarello, A.; Petri, I.; Salmon, P. S.; Parisel, O.; Car, R.; Tóth, é.; Powell, D. H.; Fischer, H. E.; Helm, L.; Merbach,A. Science, 2001, 291: 856

    93. [93]

      93. Kielpinski, D.; Meyer,V.; Rowe, M.A.; Sackett, C.A.; Itano,W. M.; Monroe, C.;Wineland, D. J. Science, 2001, 291: 1013

    94. [94]

      94. Kropman, M. F.; Bakker, H. J. Science, 2001, 291: 2118

    95. [95]

      95. Mejias, J. A.; La , S. J. Chem. Phys., 2000, 113: 7306

    96. [96]

      96. Friedman, H. L.; Krishnan,V.V.Water:Acomprehensive treatise. NewYork: Plenum, 1973

    97. [97]

      97. Zhu,T.; Li, J.; Hawkins, G. D.; Cramer, C. J.;Truhlar, D. G. J. Chem. Phys. 1998, 109: 9117

    98. [98]

      98. Tissandier, M. D.; Cowen, K.A.; Feng,W.Y.; Gundlach, E.; Cohen, M. H.; Earhart,A. D.; Coe, J.V. J. Phys. Chem.A, 1998, 102: 7787; 1998, 102: 9308 (correction)

    99. [99]

      99. Mallard,W. G.; Linstrom, P. J. Eds. NIST chemistry webbook, NIST standard reference database number 69, February 2000. Gaithersburg, MD: National Institute of Standards andTechnology, 2000 (http://webbook.nist. v)

    100. [100]

      100. Ruscic, B.; Feller, D.; Dixon, D.A.; Peterson, K.A.; Harding, L. B.;Asher, R. L.;Wagner,A. F. J. Phys. Chem.A, 2001, 105: 1

    101. [101]

      101. Ruscic, B.;Wagner,A. F.; Harding, L. B.;Asher, R. L.; Feller, D.; Dixon, D.A.; Peterson, K.A.; Song,Y.; Qian, X.; Ng, C.Y.; Liu, J.; Chen,W.; Schwenke, D.W. J. Phys. Chem.A, 2002, 106: 2727

    102. [102]

      102. Huang, X.; Zheng, F.; Crooks, P. A.; Dwoskin, L. P.; Zhan, C. G. J. Am. Chem. Soc., 2005, 127: 14401

    103. [103]

      103. Huang, X.; Zheng, F.; Chen, X.; Crooks, P. A.; Dwoskin, L. P.; Zhan, C. G. J. Med. Chem., 2006, 49: 7661

    104. [104]

      104. Huang, X.; Zheng, F.; Stokes, C.; Papke, R. L.; Zhan, C. G. J. Med. Chem., 2008, 51: 6293

    105. [105]

      105. Huang, X.; Zheng, F.; Zhan, C. G. J. Am. Chem. Soc., 2008, 130: 16691

    106. [106]

      106. Pan,Y.; Gao, D.; Zhan, C. G. J. Am. Chem. Soc., 2008, 130: 5140

    107. [107]

      107. Zhan, C. G.; Zheng, F.; Landry, D.W. J. Am. Chem. Soc., 2003, 125: 2462

    108. [108]

      108. Hamza,A.; Cho, H.;Tai, H. H.; Zhan, C. G. J. Phys. Chem. B, 2005, 109: 4776

    109. [109]

      109. Gao, D.; Zhan, C. G. J. Phys. Chem. B, 2005, 109: 23070

    110. [110]

      110. Zhan, C. G.; Gao, D. Biophysical Journal, 2005, 89: 3863

    111. [111]

      111. Liu, J.; Hamza,A.; Zhan, C. G. J. Am. Chem. Soc., 2009, 131: 11964

    112. [112]

      112. Gao, D.; Zhan, C. G. Proteins, 2006, 62: 99

    113. [113]

      113. Pan,Y.; Gao, D.;Yang,W.; Cho, H.;Yang, G. F.;Tai, H. H.; Zhan, C. G. Proc. Natl. Acad. Sci. U. S.A., 2005, 102: 16656

    114. [114]

      114. Gao, D.; Cho, H.;Yang,W.; Pan,Y.;Yang, G. F.;Tai, H. H.; Zhan, C. G.Angew. Chem. Int. Edit., 2006, 45: 653

    115. [115]

      115. Pan,Y.; Gao, D.;Yang,W.; Cho, H.; Zhan, C. G. J. Am. Chem. Soc., 2007, 129: 13537

    116. [116]

      116. Zheng, F.;Yang,W.; Ko, M. C.; Liu, J.; Cho, H.; Gao, D.;Tong, M.;Tai, H.-H.;Woods, J. H.; Zhan, C. G. J. Am. Chem. Soc., 2008, 130: 12148

    117. [117]

      117. Yang,W.; Pan,Y.; Fang, L.; Gao, D.; Zheng, F.; Zhan, C. G. J. Phys. Chem. B, 2010, 114: 10889

    118. [118]

      118. Yang,W.; Pan,Y.; Zheng, F.; Cho, H.;Tai, H. H.; Zhan, C. G. Biophysical Journal, 2009, 96: 1931

    119. [119]

      119. Zheng, F.; Zhan, C. G. Org. Biomol. Chem., 2008, 6: 836

    120. [120]

      120. Zheng, F.; Zhan, C. G. J. Computer-Aided Mol. Design, 2008, 22: 661

    121. [121]

      121. Brim, R. L.; Nance, M. R.;Youngstrom, D.W.; Narasimhan, D.; Zhan, C. G.;Tesmer, J. J. G.; Sunahara, R. K.;Woods, J. H. Mol. Pharmacol., 2010, 77: 593

    122. [122]

      122. Yang,W.; Xue, L.; Fang, L.; Zhan, C. G. Chemico-Biological Interactions, 2010, 187: 148

    123. [123]

      123. Gao, D.; Narasimhan, D. L.; Macdonald, J.; Ko, M. C.; Landry, D. W.;Woods, J. H.; Sunahara, R. K.; Zhan, C. G. Mol. Pharmacol., 2009, 75: 318

    124. [124]

      124. Zheng, F.; Zhan, C. G. Future Med. Chem., 2009, 1: 515

    125. [125]

      125. Collins, G.T.; Brim, R. L.; Narasimhan, D.; Ko, M. C.; Sunahara, R. K.; Zhan, C. G.;Woods, J. H. J. Pharm. Exp. Ther., 2009, 331: 445

    126. [126]

      126. Koca, J.; Zhan, C. G.; Rittenhouse, R.; Ornstein, R. L. J. Am. Chem. Soc., 2001, 123: 817

    127. [127]

      127. Xiong,Y.; Lu, H.; Li,Y.;Yang, G.; Zhan, C. G. Biophysical Journal, 2006, 91: 1858

    128. [128]

      128. Xiong,Y.; Lu, H.T.; Zhan, C. G. J. Comput. Chem., 2008, 29: 1259

    129. [129]

      129. Lu, H.; ren,A. C.; Zhan, C. G. J. Phys. Chem. B, 2010, 114: 7022


  • 加载中
    1. [1]

      Xi TangChunlei ZhuYulu YangShihan QiMengqiu CaiAbdullah N. AlodhaybJianmin Ma . Additive regulating Li+ solvation structure to construct dual LiF−rich electrode electrolyte interphases for sustaining 4.6 V Li||LiCoO2 batteries. Chinese Chemical Letters, 2024, 35(12): 110014-. doi: 10.1016/j.cclet.2024.110014

    2. [2]

      Haiying Lu Weijie Li . The electrolyte solvation and interfacial chemistry for anode-free sodium metal batteries. Chinese Journal of Structural Chemistry, 2024, 43(11): 100334-100334. doi: 10.1016/j.cjsc.2024.100334

    3. [3]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    4. [4]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    5. [5]

      Jia JIZhaoyang GUOWenni LEIJiawei ZHENGHaorong QINJiahong YANYinling HOUXiaoyan XINWenmin WANG . Two dinuclear Gd(Ⅲ)-based complexes constructed by a multidentate diacylhydrazone ligand: Crystal structure, magnetocaloric effect, and biological activity. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 761-772. doi: 10.11862/CJIC.20240344

    6. [6]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

    7. [7]

      Chen ChenJinzhou ZhengChaoqin ChuQinkun XiaoChaozheng HeXi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739

    8. [8]

      Shenhao QIUQingquan XIAOHuazhu TANGQuan XIE . First-principles study on electronic structure, optical and magnetic properties of rare earth elements X (X=Sc, Y, La, Ce, Eu) doped with two-dimensional GaSe. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2250-2258. doi: 10.11862/CJIC.20240104

    9. [9]

      Tao WeiJiahao LuPan ZhangQi ZhangGuang YangRuizhi YangDaifen ChenQian WangYongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122

    10. [10]

      Jun-Ting MoZheng Wang . Achieving tunable long persistent luminescence in metal organic halides based on pyridine solvent. Chinese Chemical Letters, 2024, 35(9): 109360-. doi: 10.1016/j.cclet.2023.109360

    11. [11]

      Meiling XuXinyang LiPengyuan LiuJunjun LiuXiao HanGuodong ChaiShuangling ZhongBai YangLiying Cui . A novel and visible ratiometric fluorescence determination of carbaryl based on red emissive carbon dots by a solvent-free method. Chinese Chemical Letters, 2025, 36(2): 109860-. doi: 10.1016/j.cclet.2024.109860

    12. [12]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    13. [13]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    14. [14]

      Zhenyang Lin . A classification scheme for inorganic cluster compounds based on their electronic structures and bonding characteristics. Chinese Journal of Structural Chemistry, 2024, 43(5): 100254-100254. doi: 10.1016/j.cjsc.2024.100254

    15. [15]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    16. [16]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    17. [17]

      Min FuPan HeSen ZhouWenqiang LiuBo MaShiying ShangYaohao LiRuihan WangZhongping Tan . An unexpected stereochemical effect of thio-substituted Asp in native chemical ligation. Chinese Chemical Letters, 2024, 35(8): 109434-. doi: 10.1016/j.cclet.2023.109434

    18. [18]

      Yixia ZhangCaili XueYunpeng ZhangQi ZhangKai ZhangYulin LiuZhaohui ShanWu QiuGang ChenNa LiHulin ZhangJiang ZhaoDa-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196

    19. [19]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    20. [20]

      Botao GaoHe QiHui LiuJun Chen . Role of polarization evolution in the hysteresis effect of Pb-based antiferroelecrtics. Chinese Chemical Letters, 2024, 35(4): 108598-. doi: 10.1016/j.cclet.2023.108598

Metrics
  • PDF Downloads(1639)
  • Abstract views(2247)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return