Citation: TAO Wan-Jun, LI Chen-Wen, YIN Zong-Ning. Design of Self-Emulsifying System Based on QSAR[J]. Acta Physico-Chimica Sinica, ;2011, 27(01): 71-77. doi: 10.3866/PKU.WHXB20101222 shu

Design of Self-Emulsifying System Based on QSAR

  • Received Date: 6 August 2010
    Available Online: 8 November 2010

    Fund Project: 国家自然科学基金(30973659)资助项目 (30973659)

  • Quantitative structure-activity relationships (QSARs) were used to design self-emulsifying delivery system. Ab initio calculations were carried out at the HF/6-31G* level. The influences of component ratio, stereoscopic effect, hydrophobic interactions, and the electric effect on the microemulsion areas and the size of the self-emulsifying systems were investigated. The microemulsion areas and sizes were correlated to the generated descriptors and the ratio of the components using multiple linear regression analysis (MLR). Validation was carried out by a predictive-ability test. The ratio of surfactant to co-surfactant had the most impact on the phase behavior of the self-emulsifying systems. The size of the self-emulsifying system increased with an increase in the amount of oil and co-surfactant and decreased with an increase in the amount of surfactant. Interactions between the components had little influence on the properties of the systems. The models had significant predictive power except for the model of isopropyl myristate (IPM). QSARis a new method to investigate the preparation of self-emulsifying systems.

  • 加载中
    1. [1]

      1. Lu, J. L.;Wang, J. C.; Zhao, S. X. Eur. J. Pharm. Biopharm., 2008, 69: 899

    2. [2]

      2. ddeeris, C.; Coacci, J.; Mooter, G. Eur. J. Pharm. Biopharm., 2007, 66: 173

    3. [3]

      3. Eman, A.; Albert, A.; Belmonte. Eur. J. Pharm. Sci., 2008, 35: 257

    4. [4]

      4. Prabagar, B.; Beom, J. L.; Dong, H. Eur. J. Pharm. Biopharm., 2009, 72:539

    5. [5]

      5. Walt, M.; Ping, G. Developing Solid Oral Dosage Forms, 2009: 443

    6. [6]

      6. Gursoy, R. N.; Simon, B. Biomed. Pharmacother., 2004, 58: 173

    7. [7]

      7. Prince, L. M. Microemulsions, theory and practice. New York: Academic Press, 1977

    8. [8]

      8. Gershanik, T.; Benita, S. Eur. J. Pharm. Biopharm., 2000, 50: 179

    9. [9]

      9. Shinoda, K.; Araki, M.; Sadaghiani, A. J. Phys. Chem., 1991, 95: 989

    10. [10]

      10. Swenson, E. S.; Milisen,W. B.; Curatolo,W. Pharm. Res., 1994, 11: 1132

    11. [11]

      11. Pasha, F. A.; Muddassar, M.; Cheolju, L.; Seung, J. C. Environ. Toxicol. Pharmacol., 2008, 26: 128

    12. [12]

      12. Mohammad, G.; Matheus, P. F. Eur. J. Med. Chem., 2010, 45: 1352

    13. [13]

      13. Pasha, F. A.; Muddassar, M.; Seung, J. C. ; Kaleem, A.; Yakub, B. Eur. J. Med. Chem., 2008, 43:2361

    14. [14]

      14. Bertosa, B.; Aleksic, M.; Karminiski-Zamola, G.; Tomic, S. Int. J. Pharm., 2010, 394:106

    15. [15]

      15. Markus, A. L. Drug Discov. Today, 2007, 12:1013

    16. [16]

      16. Vladimir, P.; Maria, G. Drug Discov. Today, 2008, 13:952

    17. [17]

      17. Taravat, G; Mohammad, B.; Siavoush, D. Int. J. Pharm., 2006, 319: 82

    18. [18]

      18. Tia , L.; Moda, C. A.; Montanari; Adriano, D. Bioorg. Med. Chem., 2008, 16: 7944

    19. [19]

      19. Taravat, G.; Arezoo, S.; Khosro, A. J. Pharm. Sci., 2007, 96: 3334

    20. [20]

      20. Agatonovic, K. S.; Beresford, R. J. Pharm. Biomed. Anal., 2000, 22:717

    21. [21]

      21. Ljiljana, D.; Svetlana, I.; Marija, P. Int. J. Pharm., 2008, 361:41

    22. [22]

      22. Ma, L.; Li, X. F.; Gan, M. Y. Acta Phys. -Chim. Sin., 2010, 26: 541

    23. [23]

      [马利, 黎小峰, 甘孟瑜. 物理化学学报, 2010, 26: 541]

    24. [24]

      23. Li, J. C.; Qiu, X. Q.; Yang, D. J. Chin. J. Chem. Eng., 2010, 24: 1

    25. [25]

      [李嘉诚, 邱学青, 杨东杰. 高校化学工程学报, 2010, 24:1]

    26. [26]

      24. Yan, J. H.; Zhang, M.; Lian, H. Z. Chem. J. Chin. Univ., 2005, 26: 1006

    27. [27]

      [阎景辉, 张鸣, 连洪州. 高等学校化学学报, 2005, 26: 1006]

    28. [28]

      25. Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03. Revision C.02.Wallingford, CT: Gaussian Inc., 2004

    29. [29]

      26. Zheng, Y. J.; ELI,W. Acta Phys. -Chim.Sin., 2008, 24: 2143

    30. [30]

      [郑永军, 吾满江·艾力. 物理化学学报, 2008, 24: 2143]

    31. [31]

      27. Ping, Z.; Ying, L.; Nianping, F. Int. J. Pharm., 2008, 355: 269


  • 加载中
    1. [1]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    2. [2]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037

    3. [3]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    4. [4]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    5. [5]

      Gaoyan Chen Chaoyue Wang Juanjuan Gao Junke Wang Yingxiao Zong Kin Shing Chan . Heart to Heart: Exploring Cardiac CT. University Chemistry, 2024, 39(9): 146-150. doi: 10.12461/PKU.DXHX202402011

    6. [6]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    7. [7]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    8. [8]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    9. [9]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    10. [10]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    11. [11]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    12. [12]

      Haiyang Zhang Yanzhao Dong Haojie Li Ruili Guo Zhicheng Zhang Jiangjiexing Wu . Exploring the Integration of Chemical Engineering Principle Experiment with Cutting-Edge Research Achievements. University Chemistry, 2024, 39(10): 308-313. doi: 10.12461/PKU.DXHX202405035

    13. [13]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    14. [14]

      Zongpei Zhang Yanyang Li Yanan Si Kai Li Shuangquan Zang . Developing a Chemistry Experiment Center Employing a Multifaceted Approach to Serve High-Quality Laboratory Education. University Chemistry, 2024, 39(7): 13-19. doi: 10.12461/PKU.DXHX202404041

    15. [15]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    16. [16]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    17. [17]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    18. [18]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    19. [19]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    20. [20]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

Metrics
  • PDF Downloads(1078)
  • Abstract views(2549)
  • HTML views(75)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return