Citation: LIU Ben-Kang, WANG Yan-Qiu, WANG Li. Time-Resolved Multiphoton Ionization Process of Xenon Investigated by Photoelectron Imaging Method[J]. Acta Physico-Chimica Sinica, ;2010, 26(12): 3157-3162. doi: 10.3866/PKU.WHXB20101220 shu

Time-Resolved Multiphoton Ionization Process of Xenon Investigated by Photoelectron Imaging Method

  • Received Date: 14 September 2010
    Available Online: 5 November 2010

    Fund Project: 国家自然科学基金(20633070)资助项目 (20633070)

  • Femtosecond time-resolved multiphoton ionization dynamics of xenon was investigated using a homemade ion imaging detector. A comparison experiment comprising of the multiphoton ionization of Xe at 408 nm showed that the energy resolution of our homemade image detector was similar to that of a commercial detector. Under 272 nm femtosecond laser irradiation, photoelectrons with a kinetic energy of 1.57 and 0.26 eV, produced by three-photon ionization, corresponded to two different Xe + spin states, respectively. For the ionization at 408 nm, an additional first-order above-threshold ionization of Xe was also observed. In the two-color femtosecond time-resolved experiments, the photoelectron kinetic energy spectra varied with the delay time between the pump and the probe. The photoelectron intensities produced by 3+1' and 4'+1 two-color multiphoton ionization schedules became stronger with an increase in the degree of overlap between the two laser beams. The kinetic energy of the photoelectrons produced by one-color multiphoton ionization showed obvious red shifts, which were modulated by the second laser beam. Depopulation of the excited states was also observed upon application of the second laser beam. The red shifts in the photoelectron kinetic energy spectra reflect the time-dependent dynamical modulation process of the laser induced ponderomotive effect in an atomic system.

  • 加载中
    1. [1]

      1. Bordas, C.; Dyer, M. J.; Fairfield, T.; Helm, H.; Kulander, K. C. Phys. Rev. A, 1995, 51: 3726

    2. [2]

      2. Schyja, V.; Lang, T.; Helm, H. Phys. Rev. A, 1998, 57: 3692

    3. [3]

      3. Wiehle, R.;Witzel, B. Phys. Rev. Lett., 2002, 89: 223002

    4. [4]

      4. A stini, P.; Breger, P.; L' Huillier, A.; Muller, H. G.; Petite, G. Phys. Rev. Lett., 1989, 63: 2208

    5. [5]

      5. Vrijen, R. B.; Hoogenraad, J. H.; Muller, H. G.; Noordam, L. D. Phys. Rev. Lett., 1993, 70: 3016

    6. [6]

      6. de Boer, M. P.; Muller, H. G. J. Phys. B: At. Mol. Opt. Phys., 1994, 27: 721

    7. [7]

      7. Rottke, H.; Ludwig, J.; Sandner,W. J. Phys. B: At. Mol. Opt. Phys., 1996, 29: 1479

    8. [8]

      8. Gingras, G.; Tripathi, A.;Witzel, B. Phys. Rev. Lett., 2009, 103: 173001

    9. [9]

      9. Haber, L. H.; Doughty, B.; Leone, S. R. Phys. Rev. A, 2009, 79: 031401

    10. [10]

      10. Aron, K.; Johnson, P. M. J. Chem. Phys., 1977, 67: 5099

    11. [11]

      11. A stini, P.; Fabre, F.; Mainfray, G.; Petite, G.; Rahman, N. K. Phys. Rev. Lett., 1979, 42: 1127

    12. [12]

      12. Freeman, R. R.; Bucksbaum, P. H.; Milchberg, H.; Darack, S.; Schumacher, D.; Geusic, M. E. Phys. Rev. Lett., 1987, 59: 1092

    13. [13]

      13. Paulus, G. G.; Nicklich,W.; Xu, H.; Lambropoulos, P.;Walther, H. Phys. Rev. Lett., 1994, 72: 2851

    14. [14]

      14. Hansch, P.;Walker, M. A.; VanWoerkom, L. D. Phys. Rev. A, 1997, 55: R2535

    15. [15]

      15. Hertlein, M. P.; Bucksbaum, P. H.; Muller, H. G. J. Phys. B: At. Mol. Opt. Phys., 1997, 30: L197

    16. [16]

      16. Böhmer, K.; Halfmann, T.; Yatsenko, L. P.; Charalambidis, C.; Horsmans, A.; Bergmann, K. Phys. Rev. A, 2002, 66: 013406

    17. [17]

      17. Stellpflug, M.; Johnsson, M.; Petrov, I. D.; Halfmann, T. Eur. Phys. J. D, 2003, 23: 35

    18. [18]

      18. Kaminski, P.;Wiehle, R.; Renard, V.; Kazmierczak, A.; Lavorel, B.; Faucher, O.;Witzel, B. Phys. Rev. A, 2004, 70: 053413

    19. [19]

      19. Gilb, S.; Torres, E. A.; Leone, S. R. J. Phys. B: At. Mol. Opt. Phys., 2006, 39: 4231 3161

    20. [20]

      20. Loh, Z. H.; Khalil, M.; Correa, R. E.; Santra, R.; Buth, C.; Leone, S. R. Phys. Rev. Lett., 2007, 98: 143601

    21. [21]

      21. Solomon, J. J. Chem. Phys., 1967, 47: 889

    22. [22]

      22. Chandler, D.W.; Houston, P. L. J. Chem. Phys., 1987, 87: 1445

    23. [23]

      23. Eppink, A. T. J. B.; Parker, D. H. Rev. Sci. Instrum., 1997, 68: 3477

    24. [24]

      24. Smith, L. M.; Keefer, D. R.; Sudharsanan, S. I. J. Quant. Spectrosc. Radiat. Transfer., 1988, 39: 367

    25. [25]

      25. Bordas, C.; Paulig, F.; Helm, H.; Huestis, D. L. Rev. Sci. Instrum., 1996, 67: 2257

    26. [26]

      26. Zhu, J. Y.;Wang, B. X.; Guo,W.;Wang, Y. Q.;Wang, L. Chin. Phys. Lett., 2007, 24: 1922

    27. [27]

      27. Stolow, A.; Bragg, A. E.; Neumark, D. M. Chem. Rev., 2004, 104: 1719

    28. [28]

      28. Wang, B. X.; Liu, B. K.;Wang, Y. Q.;Wang, L. Phys. Rev. A, 2010, 81: 043421

    29. [29]

      29. Saloman, E. B. J. Phys. Chem. Ref. Data, 2004, 33: 765

    30. [30]

      30. A stini, P.; Kupersztych, J.; LompréL, A.; Petite, G.; Yergeau, F. Phys. Rev. A, 1987, 36: 4111

    31. [31]

      31. Micheal, D. P.; Landen, O. L. Phys. Rev. A, 1988, 38: 2815

    32. [32]

      32. Schmidt, T.W.; Lopez-Martens, R. B.; Roberts, G. J. Phys. B: At. Mol. Opt. Phys., 2004, 37: 1125

    33. [33]

      33. Schmitt, M.; Lochbrunner, S.; Shaffer, J. P.; Larsen, J. J.; Zgierski, M. Z.; Stolow, A. J. Chem. Phys., 2001, 114: 1206


  • 加载中
    1. [1]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    2. [2]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    3. [3]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    4. [4]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    5. [5]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    6. [6]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    7. [7]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    8. [8]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    9. [9]

      Zian Lin Yingxue Jin . Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry (MALDI-MS) for Disease Marker Screening and Identification: A Comprehensive Experiment Teaching Reform in Instrumental Analysis. University Chemistry, 2024, 39(11): 327-334. doi: 10.12461/PKU.DXHX202403066

    10. [10]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    11. [11]

      Yuhang Zhang Weiwei Zhao Hongwei Liu Junpeng Lü . 基于低维材料的自供电光电探测器研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-. doi: 10.3866/PKU.WHXB202310004

    12. [12]

      Yao Ma Xin Zhao Hongxu Chen Wei Wei Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045

    13. [13]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    14. [14]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    15. [15]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    16. [16]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    17. [17]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    18. [18]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    19. [19]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    20. [20]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

Metrics
  • PDF Downloads(1156)
  • Abstract views(2595)
  • HTML views(8)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return