Citation: LI Mei-Chao, WANG Wu-Yang, ZHU Wan-Xia, MA Chun-An. Electrocatalytic Oxidation of Ascorbic Acid on a PPy-HEImTfa/Pt Electrode and Its Mechanism[J]. Acta Physico-Chimica Sinica, ;2010, 26(12): 3212-3216. doi: 10.3866/PKU.WHXB20101218 shu

Electrocatalytic Oxidation of Ascorbic Acid on a PPy-HEImTfa/Pt Electrode and Its Mechanism

  • Received Date: 10 June 2010
    Available Online: 5 November 2010

    Fund Project: 浙江省自然科学基金(Y4100647) (Y4100647)浙江省分析测试科技计划(2008F70029)资助项目 (2008F70029)

  • A platinum electrode was electrochemically modified with polypyrrole (PPy) in the ionic liquid 1-ethylimidazolium trifluoroacetate (HEImTfa) to produce a modified electrode (PPy-HEImTfa/Pt). Its electrocatalytic performance toward the oxidation of ascorbic acid (0.1 mol·L-1) was investigated by cyclic voltammetry. Compared with a bare Pt electrode and a PPy-H2SO4/Pt electrode, which was prepared in a solution of H2SO4, the peak potentials for ascorbic acid oxidation on the PPy-HEImTfa/Pt electrode decreased by 0.19 and 0.10 V, respectively. Additionally, the peak currents increased by 3.6 and 3.0 mA, respectively. Therefore, the electrocatalytic activity of the PPy-HEImTfa/Pt electrode for the oxidation of ascorbic acid was far better than that of the other systems. In situ Fourier transform infrared (In situ FTIR) spectroscopy results showed that the ascorbic acid was firstly oxidized to dehydroascorbic acid on the PPy-HEImTfa/Pt electrode and then underwent a fast hydration reaction to give hydrated dehydroascorbic acid in the aqueous solution. The hydrated dehydroascorbic acid then underwent further hydrolysis to form 2,3-diketogulonic acid by a ring opening reaction. Finally, a part of ascorbic acid was oxidized to CO2 at high potentials.

  • 加载中
    1. [1]

      1. Raoof, J. B.; Ojani, R.; Rashid-Nadimi, S. Electrochim. Acta, 2005, 50(24): 4694

    2. [2]

      2. Xing, X. K.; Bae, I. T.; Shao, M. J.; Liu C. C. J. Electroanal. Chem., 1993, 346(1-2): 309

    3. [3]

      3. Zhang, L. Electrochim. Acta, 2007, 52(24): 6969

    4. [4]

      4. Paixao, T. R. L. C.; Bertotti, M. J. Pharm. Biomed. Anal., 2008, 46(3): 528

    5. [5]

      5. Ambrosi, A.; Morrin, A.; Smyth, M. R.; Killard, A. J. Anal. Chim. Acta, 2008, 609(1): 37

    6. [6]

      6. Diaz, A. F.; Kanazawa, K. K.; Gardini, G. P. J. Chem. Soc., Chem. Commun., 1979, (14): 635

    7. [7]

      7. Li, Y. F. Polymer Bulletin, 2005, (4): 51. [李永舫. 高分子通报, 2005, (4): 51]

    8. [8]

      8. Ozcan, L.; Sahin, M.; Sahin, Y. Sensors, 2008, 8(9): 5792

    9. [9]

      9. Gholivand, M. B.; Amiri, M. Electroanalysis, 2009, 21(22): 2461

    10. [10]

      10. Wang, J. S.;Wang, J. X.;Wang, Z.;Wang, S. C. Synth. Met., 2006, 156(7-8): 610

    11. [11]

      11. Mohadesi, A.; Taher, M. A. Sens. Actuators B, 2007, 123(2): 733

    12. [12]

      12. Mascaro, L. H.; ncalves, D.; Bulhoes, L. O. S. Thin Solid Films, 2004, 461(2): 243

    13. [13]

      13. Mazurkiewicz, J. H.; Innis, P. C.;Wallace, G. G.; MacFarlane, D. R.; Forsyth, M. Synth. Met., 2003, 135(1-3): 31

    14. [14]

      14. Pringle, J. M.; Efthimiadis, J.; Howler, P. C.; Efthimiadis, J.; MacFarlane, D. R.; Chaplin, A. B.; Hall, S. B.; Officer, D. L.; Wallace, G. G. Polymer, 2004, 45(5): 1447

    15. [15]

      15. Sekiguchi, K.; Atobe, M.; Fuchigami, T. Electrochem. Commun., 2002, 4(11): 881

    16. [16]

      16. Li, M. C.; Ma, C. A.; Liu, B. Y.; Jin, Z. M. Electrochem. Commun., 2005, 7(2): 209

    17. [17]

      17. Sun, S. G.; ng, H. Petrochemical Technology, 2001, 30(10): 806. [孙世刚, 贡辉. 石油化工, 2001, 30(10): 806]

    18. [18]

      18. Nichl, M. E.; Hu, H. Sol. Energy Mater. Sol. Cells, 2000, 63(4): 423

    19. [19]

      19. Li, M. C.; Shen, Z. L.; Ma, C. A.; Gao, Y. F. Journal of Chemical Industry and Engineering (China), 2006, 57(7): 1588

    20. [20]

      20. Yang, H.; Lu, T. H.; Xue, K. H.; Sun, S. G.; Lu, G. Q.; Chen, S. P. J. Electrochem. Soc., 1997, 144(7): 2302

    21. [21]

      21. Xue, K. H.; Cai, C. X.; Yang, H.; Zhou, Y. M.; Sun, S. G.; Chen, S. P.; Xu, G. J. Power Sources, 1998, 75(2): 207

    22. [22]

      22. Gao, Y. F.; Liu,W. H.; Li, Z. G.; Ma, C. A. Chin. J. Spectroscopy Laboratory, 2002, 19(3): 354. [高云芳, 刘文涵, 李祖光, 马淳安. 光谱实验室, 2002, 19(3): 354]

    23. [23]

      23. Kokoh, K. B.; Hahn, F.; Metayer, A.; Lamy, C. Electrochim. Acta, 2002, 47(24): 3965

    24. [24]

      24. Wang, X. Y.; Cui, X. P.; Cui, Y. M.; Jin, B. K.; Lin, X. Q. Chem. J. Chin. Univ., 2002, 23(8): 1498. [汪夏燕, 崔兴品, 崔运梅, 金葆康, 林祥钦. 高等学校化学学报, 2002, 23(8): 1498]


  • 加载中
    1. [1]

      Jie ZHANGXin LIUZhixin LIYuting PEIYuqi YANGHuimin LIZhiqiang LIU . Assembling a luminescence silencing system based on post-synthetic modification strategy: A highly sensitive and selective turn-on metal-organic framework probe for ascorbic acid detection. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 823-833. doi: 10.11862/CJIC.20230310

    2. [2]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    3. [3]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    4. [4]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    5. [5]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    6. [6]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    7. [7]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    8. [8]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    9. [9]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    10. [10]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    11. [11]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    12. [12]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    13. [13]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    14. [14]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    15. [15]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    16. [16]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    17. [17]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    18. [18]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    19. [19]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    20. [20]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

Metrics
  • PDF Downloads(1226)
  • Abstract views(2863)
  • HTML views(18)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return