Citation: ZHENG Hai-Ying, XIE Guan-Qun, WANG Xiao-Xia, JIN Ling-Yun, LUO Meng-Fei. Selective Hydrogenation of Crotonaldehyde over ZrO2-Supported Pt Catalysts[J]. Acta Physico-Chimica Sinica, ;2010, 26(12): 3273-3277. doi: 10.3866/PKU.WHXB20101216 shu

Selective Hydrogenation of Crotonaldehyde over ZrO2-Supported Pt Catalysts

  • Received Date: 16 July 2010
    Available Online: 4 November 2010

    Fund Project: 浙江省自然科学基金(Y4100300)资助项目 (Y4100300)

  • Pt catalysts supported on high specific surface area ZrO2 were prepared by the impregnation method and applied to the hydrogenation of crotonaldehyde in the gas phase at atmospheric pressure. The effects of Pt loading and reduction temperature on the catalytic properties of the Pt/ZrO2 catalysts were investigated. It was found that the 3Pt/ZrO2 catalyst with a mass fraction of 3% Pt and at a reduction temperature of 500 °C exhibited favorable catalytic performance for the selective hydrogenation of crotonaldehyde. The selectivity for crotyl alcohol reached 55% at 27% crotonaldehyde conversion. The catalysts were characterized by X-ray powder diffraction (XRD), CO chemisorption, and NH3 temperature programmed desorption (NH3-TPD). The results indicated that the catalytic performance depended on the strong Lewis acidic sites on the catalyst surface and a proper Pt particle size of ca 8 nm for the selective hydrogenation of crotonaldehyde to crotyl alcohol.

  • 加载中
    1. [1]

      1. Milone, C.; In glia, R.; Schipilliti, L. ; Crisafulli, C.; Neri, G.; Galvagno, S. J. Catal., 2005, 236: 80

    2. [2]

      2. Mertens, P. G. N.; Vandezande, P.; Ye, X. P.; Poelman, H. Appl. Catal. A: Gen., 2009, 335: 176

    3. [3]

      3. Kliewer, C.; J. Bieri, M.; Somorjai, G. A. J. Am. Chem. Soc., 2009, 131: 9958

    4. [4]

      4. Claus, P.; Hofmeister, H. J. Phys. Chem. B, 1999, 103: 2766

    5. [5]

      5. Gebauer-Henke, E.; Grams, J.; Szubiakiewicz, E.; Farbotko, J.; Touroude, R.; Rynkowski, J. J. Catal., 2007, 250: 195

    6. [6]

      6. Ramos-Ferández, E.V.; Sepúlveda-Escribano, A.; Rodríguez-Reinoso, F. Catal. Commun., 2008, 9: 1243

    7. [7]

      7. Yang, Q. Y.; Zhu, Y., Tian, L.; Pei, Y.; Qian M. H.; Fan, K. N. Acta Phys. -Chim. Sin., 2009, 25: 1853. [杨秋芸, 朱渊, 田莉, 裴燕, 乔明华, 范康年. 物理化学学报, 2009, 25: 1853]

    8. [8]

      8. Jen. P. H.; Hsu, Y. H.; Lin, S. D. Catal. Today, 2007, 123: 133

    9. [9]

      9. Hubaut, R.; Daaqe, M.; Bonnelle, J. P. Appl. Catal. A: Gen., 1986, 22: 231

    10. [10]

      10. Noller, H., Lin,W. M. J. Catal., 1984, 85: 25

    11. [11]

      11. Okumura, M.; Akita, T.; Haruta, M. Catal. Today, 2002, 74: 265

    12. [12]

      12. Centeno, M. A. ; Hadjiivanov, K.; Venkov, T.; Kilmev, H.; Odriozola, J. A. J. Mol. Catal. A: Chem., 2006, 252: 142

    13. [13]

      13. Xie, G. Q.; Liu, X. J.; Tao, L. P.; Lu, J. Q.; Luo, M. F.; Li, X. N. Chin. J. Catal., 2009, 30: 543. [谢冠群, 刘西敬, 陶丽萍, 鲁继青,罗孟飞, 李小年. 催化学报, 2009, 30: 543]

    14. [14]

      14. Gebauer-Henke, E.; Grams, J.; Szubiakiewicz, E.; Farbotko, J.; Touroude, R.; Rynkowski, J. J. Catal., 2007, 250: 195

    15. [15]

      15. Abid, M.; Paul-Boncour, V.; Touroude, R. Appl. Catal. A: Gen., 2006, 297: 48

    16. [16]

      16. Ammari, F.; Lamotte, J.; Touroude, R. J. Catal., 2004, 221: 32

    17. [17]

      17. Campo, B.; Volpe, M.; Ivanova, S.; Touroude, R. J. Catal., 2006, 242: 162

    18. [18]

      18. Campo, B.; Petit, C.; Volpe, M. A. J. Catal., 2008, 254: 71

    19. [19]

      19. Guo, M. N.; Guo, C. X.; Jin, L. Y.;Wang, Y. J.; Lu, J. Q.; Luo, M. F. Mater. Lett., 2010, 64: 1638

    20. [20]

      20. Anderson, J. A.; Daley, R. A.; Christou, S. Y.; Efstathiou, A. M. Appl. Catal. B: Environ., 2006, 64: 89

    21. [21]

      21. Xie, G. Q.; Liu, X. J.; Lu, J. Q.; Li, X. N.; Luo, M. F. Chin. J. Rare Earth, 2009, 27: 756. [谢冠群, 刘西敬, 鲁继青, 李小年,罗孟飞. 中国稀土学报, 2009, 27: 756]

    22. [22]

      22. Grass, M. E.; Rioux, R. M.; Somorjai, G. A. Catal. Lett., 2009, 28: 1

    23. [23]

      23. Triwahyono, S.; Abdul-Jalil, A.; Musthofa, M. Appl. Catal. A: Gen., 2010, 373: 90

    24. [24]

      24. Ammari, F.; Milome, C.; Touroude, R. J. Catal., 2005, 235: 1

    25. [25]

      25. Yang, S.W.; Xu, J.; Xin, Q. Chin. J. Mol. Catal., 1998, 12: 152. [杨树武, 徐江, 辛勤. 分子催化, 1998, 12: 152]


  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    3. [3]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    4. [4]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    5. [5]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    6. [6]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    7. [7]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    8. [8]

      Fanxin Kong Hongzhi Wang Huimei Duan . Inhibition effect of sulfation on Pt/TiO2 catalysts in methane combustion. Chinese Journal of Structural Chemistry, 2024, 43(5): 100287-100287. doi: 10.1016/j.cjsc.2024.100287

    9. [9]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    10. [10]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    11. [11]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    15. [15]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    16. [16]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    17. [17]

      Lian SunHonglei WangMing MaTingting CaoLeilei ZhangXingui Zhou . Shape and composition evolution of Pt and Pt3M nanocrystals under HCl chemical etching. Chinese Chemical Letters, 2024, 35(9): 109188-. doi: 10.1016/j.cclet.2023.109188

    18. [18]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    19. [19]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    20. [20]

      Naihong Wang Longkang Zhang Yejun Guan Peng Wu Hao Xu . Pt confined in Sn-ECNU-46 zeolite for efficient alkane dehydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(4): 100248-100248. doi: 10.1016/j.cjsc.2024.100248

Metrics
  • PDF Downloads(1300)
  • Abstract views(2352)
  • HTML views(2)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return