Citation: ZHAO Yong-Ping, AI Hong-Qi, CHEN Jin-Peng, YANG Ai-Bin, QI Zhong-Nan. Stability of Complexes Combined by Metal Ions (Na+, K+, Ca2+, Mg2+, Zn2+) and Guanine Isomers[J]. Acta Physico-Chimica Sinica, ;2010, 26(12): 3322-3328. doi: 10.3866/PKU.WHXB20101215 shu

Stability of Complexes Combined by Metal Ions (Na+, K+, Ca2+, Mg2+, Zn2+) and Guanine Isomers

  • Received Date: 13 August 2010
    Available Online: 3 November 2010

    Fund Project: 国家自然科学基金(20973084, 20573047) (20973084, 20573047)

  • The order of stability for complexes of differently coordinated metal ions (M+/2+=Na+, K+, Ca2+, Mg2+, Zn2+) with thirteen guanine isomers in gas (g) and aqueous (a) phases was systematically investigated at the B3LYP/6-311++G** level in combination with the polarized continuum model (PCM). Special effort was devoted to differences in the order of stability for aGnxM+/2+ (n is the label of guanine isomers, x denotes binding site of M+/2+ and guanine isomers) complexes that were obtained in aqueous solutions. An analysis was also performed to determine the reason for these differences with respect to the solute-solvent effect, binding energy, deformation energy, and relative free energy of the guanine isomers. The most stable complexes generated by the five metal ions were: aG1N2,N3Na+ , aG1N2,N3K+ , aG1O6,N7Ca2+ , aG1N2,N3Mg2+ (aG1O6,N7Mg2+), and aG2N3,N9Zn2+. The isomer of guanine in the most stable Zn2+ complex in the aqueous solution was G2 whereas in the other four most stable complexes it was G1, i.e., the different active sites in G1 generate the four most stable complexes. Additionally, we report on stable complexes in the gas phase such as gG3N1,O6K+, gG5N1,O6K+, gG3N1,O6Ca2+/Mg2+, and gG4O6,N7Ca2+/Mg2+.

  • 加载中
    1. [1]

      1. Potaman, V. N.; Soyfer, V. N. J. Biomol. Struct. Dyn., 1994, 11: 1035

    2. [2]

      2. Martin, R. B. Acc. Chem. Res., 1985, 18: 32

    3. [3]

      3. Muller, J.; Sigel, R. K. O.; Lippert, B. J. Inorg. Biochem., 2000, 79: 261

    4. [4]

      4. Saenger,W.; Cantor, C. R. Principles of nucleic acid structure. New York: Springer, 1984

    5. [5]

      5. Miguel, P. S.; Lax, P.;Willermann, M. Inorg. Chim. Acta, 2004, 357: 4552

    6. [6]

      6. Nakano, S. I.; Fujimoto, M.; Hara, H.; Sugimoto, N. Nucleic Acids Res., 1999, 27: 2957

    7. [7]

      7. Pettitt, B. M.; Rossky, P. J. J. Phys. Chem., 1986, 84: 5836

    8. [8]

      8. Oliva, R.; Cavallo, L. J. Phys. Chem. B, 2009, 113: 1567

    9. [9]

      9. Sabio, M.; Topiol, S.; Lumma,W. C. J. Phys. Chem., 1990, 94: 1366

    10. [10]

      10. Choi, M. Y.; Miller, R. E. J. Am. Chem. Soc., 2006, 128: 7320

    11. [11]

      11. Hanus, M.; Ryjacek, F.; Kabelac, M. J. Am. Chem. Soc., 2003, 125: 7678

    12. [12]

      12. Kabelac, M.; Hobza, P. J. Phys. Chem. B, 2006, 110: 14515

    13. [13]

      13. Mazzuca, D.; Russo, N.; Toscano, M. J. Phys. Chem. B, 2006, 110: 8815

    14. [14]

      14. Pedersen, D. B.; Simard, B. J. Phys. Chem. A, 2003, 107: 6464

    15. [15]

      15. Russo, N.; Toscano, M.; Grand, A. J. Am. Chem. Soc., 2001, 123: 10272

    16. [16]

      16. Russo, N. J. Phys. Chem. A, 2003, 107: 11533

    17. [17]

      17. Gresh, N. J. Phys. Chem. B, 1999, 103: 11415

    18. [18]

      18. Burda, J. V.; S?poner, J.; Hobza, P. J. Phys. Chem., 1996, 100: 7250

    19. [19]

      19. Hunter, K. C.; Millen, A. L.;Wetmore, S. D. J. Phys. Chem. B, 2007, 111: 1858

    20. [20]

      20. Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03. Revision C.02.Wallingford, CT: Gaussian Inc., 2004

    21. [21]

      21. Kumar, A.; Sevilla, M. D.; Suhai, S. J. Phys. Chem. B, 2008, 112: 5189

    22. [22]

      22. Ai, H. Q.; Yang, A. B.; Li, Y. G. Acta Phys. -Chim. Sin., 2008, 24: 1047. [艾洪奇, 杨爱彬, 李允刚. 物理化学学报, 2008, 24: 1047. ]

    23. [23]

      23. Gustavsson, T.; Bányász, á.; Lazzarotto, E. J. Am. Chem. Soc., 2005, 128: 607

    24. [24]

      24. Shukla, M. K.; Jerzy, L. J. Phys. Chem. A, 2005, 1089: 7775

    25. [25]

      25. Gustavsson, T.; Sarkar, N.; Lazzarotto, E. J. Phys. Chem. B, 2006, 110: 12843

    26. [26]

      26. Boys, S. F. Mol. Phys., 1970, 19: 553


  • 加载中
    1. [1]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    2. [2]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    3. [3]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    4. [4]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    5. [5]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    6. [6]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    7. [7]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    8. [8]

      Xiaolei Jiang Fangdong Hu . Exploring the Mirror World in Organic Chemistry: the Teaching Design of “Enantiomers” from the Perspective of Curriculum and Ideological Education. University Chemistry, 2024, 39(10): 174-181. doi: 10.3866/PKU.DXHX202402052

    9. [9]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    10. [10]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    11. [11]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    12. [12]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    13. [13]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    14. [14]

      Jin Yan Chengxia Tong Yajie Li Yue Gu Xuejian Qu Shigang Wei Wanchun Zhu Yupeng Guo . Construction of a “Dual Support, Triple Integration” Chemical Safety Practical Education System. University Chemistry, 2024, 39(7): 69-75. doi: 10.12461/PKU.DXHX202405008

    15. [15]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    16. [16]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    17. [17]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    18. [18]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    19. [19]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    20. [20]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

Metrics
  • PDF Downloads(1279)
  • Abstract views(2800)
  • HTML views(60)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return