Citation: ZHAO Yong-Ping, AI Hong-Qi, CHEN Jin-Peng, YANG Ai-Bin, QI Zhong-Nan. Stability of Complexes Combined by Metal Ions (Na+, K+, Ca2+, Mg2+, Zn2+) and Guanine Isomers[J]. Acta Physico-Chimica Sinica, ;2010, 26(12): 3322-3328. doi: 10.3866/PKU.WHXB20101215 shu

Stability of Complexes Combined by Metal Ions (Na+, K+, Ca2+, Mg2+, Zn2+) and Guanine Isomers

  • Received Date: 13 August 2010
    Available Online: 3 November 2010

    Fund Project: 国家自然科学基金(20973084, 20573047) (20973084, 20573047)

  • The order of stability for complexes of differently coordinated metal ions (M+/2+=Na+, K+, Ca2+, Mg2+, Zn2+) with thirteen guanine isomers in gas (g) and aqueous (a) phases was systematically investigated at the B3LYP/6-311++G** level in combination with the polarized continuum model (PCM). Special effort was devoted to differences in the order of stability for aGnxM+/2+ (n is the label of guanine isomers, x denotes binding site of M+/2+ and guanine isomers) complexes that were obtained in aqueous solutions. An analysis was also performed to determine the reason for these differences with respect to the solute-solvent effect, binding energy, deformation energy, and relative free energy of the guanine isomers. The most stable complexes generated by the five metal ions were: aG1N2,N3Na+ , aG1N2,N3K+ , aG1O6,N7Ca2+ , aG1N2,N3Mg2+ (aG1O6,N7Mg2+), and aG2N3,N9Zn2+. The isomer of guanine in the most stable Zn2+ complex in the aqueous solution was G2 whereas in the other four most stable complexes it was G1, i.e., the different active sites in G1 generate the four most stable complexes. Additionally, we report on stable complexes in the gas phase such as gG3N1,O6K+, gG5N1,O6K+, gG3N1,O6Ca2+/Mg2+, and gG4O6,N7Ca2+/Mg2+.

  • 加载中
    1. [1]

      1. Potaman, V. N.; Soyfer, V. N. J. Biomol. Struct. Dyn., 1994, 11: 1035

    2. [2]

      2. Martin, R. B. Acc. Chem. Res., 1985, 18: 32

    3. [3]

      3. Muller, J.; Sigel, R. K. O.; Lippert, B. J. Inorg. Biochem., 2000, 79: 261

    4. [4]

      4. Saenger,W.; Cantor, C. R. Principles of nucleic acid structure. New York: Springer, 1984

    5. [5]

      5. Miguel, P. S.; Lax, P.;Willermann, M. Inorg. Chim. Acta, 2004, 357: 4552

    6. [6]

      6. Nakano, S. I.; Fujimoto, M.; Hara, H.; Sugimoto, N. Nucleic Acids Res., 1999, 27: 2957

    7. [7]

      7. Pettitt, B. M.; Rossky, P. J. J. Phys. Chem., 1986, 84: 5836

    8. [8]

      8. Oliva, R.; Cavallo, L. J. Phys. Chem. B, 2009, 113: 1567

    9. [9]

      9. Sabio, M.; Topiol, S.; Lumma,W. C. J. Phys. Chem., 1990, 94: 1366

    10. [10]

      10. Choi, M. Y.; Miller, R. E. J. Am. Chem. Soc., 2006, 128: 7320

    11. [11]

      11. Hanus, M.; Ryjacek, F.; Kabelac, M. J. Am. Chem. Soc., 2003, 125: 7678

    12. [12]

      12. Kabelac, M.; Hobza, P. J. Phys. Chem. B, 2006, 110: 14515

    13. [13]

      13. Mazzuca, D.; Russo, N.; Toscano, M. J. Phys. Chem. B, 2006, 110: 8815

    14. [14]

      14. Pedersen, D. B.; Simard, B. J. Phys. Chem. A, 2003, 107: 6464

    15. [15]

      15. Russo, N.; Toscano, M.; Grand, A. J. Am. Chem. Soc., 2001, 123: 10272

    16. [16]

      16. Russo, N. J. Phys. Chem. A, 2003, 107: 11533

    17. [17]

      17. Gresh, N. J. Phys. Chem. B, 1999, 103: 11415

    18. [18]

      18. Burda, J. V.; S?poner, J.; Hobza, P. J. Phys. Chem., 1996, 100: 7250

    19. [19]

      19. Hunter, K. C.; Millen, A. L.;Wetmore, S. D. J. Phys. Chem. B, 2007, 111: 1858

    20. [20]

      20. Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03. Revision C.02.Wallingford, CT: Gaussian Inc., 2004

    21. [21]

      21. Kumar, A.; Sevilla, M. D.; Suhai, S. J. Phys. Chem. B, 2008, 112: 5189

    22. [22]

      22. Ai, H. Q.; Yang, A. B.; Li, Y. G. Acta Phys. -Chim. Sin., 2008, 24: 1047. [艾洪奇, 杨爱彬, 李允刚. 物理化学学报, 2008, 24: 1047. ]

    23. [23]

      23. Gustavsson, T.; Bányász, á.; Lazzarotto, E. J. Am. Chem. Soc., 2005, 128: 607

    24. [24]

      24. Shukla, M. K.; Jerzy, L. J. Phys. Chem. A, 2005, 1089: 7775

    25. [25]

      25. Gustavsson, T.; Sarkar, N.; Lazzarotto, E. J. Phys. Chem. B, 2006, 110: 12843

    26. [26]

      26. Boys, S. F. Mol. Phys., 1970, 19: 553


  • 加载中
    1. [1]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    2. [2]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    3. [3]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    4. [4]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    5. [5]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    6. [6]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    7. [7]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    8. [8]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    9. [9]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    10. [10]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    11. [11]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    12. [12]

      Xiaolei Jiang Fangdong Hu . Exploring the Mirror World in Organic Chemistry: the Teaching Design of “Enantiomers” from the Perspective of Curriculum and Ideological Education. University Chemistry, 2024, 39(10): 174-181. doi: 10.3866/PKU.DXHX202402052

    13. [13]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    14. [14]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    15. [15]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    16. [16]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    17. [17]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    18. [18]

      Yanglin Jiang Mingqing Chen Min Liang Yige Yao Yan Zhang Peng Wang Jianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 100012-. doi: 10.3866/PKU.WHXB202309027

    19. [19]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    20. [20]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

Metrics
  • PDF Downloads(1279)
  • Abstract views(2834)
  • HTML views(60)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return