Citation: ZHAO Yong-Ping, AI Hong-Qi, CHEN Jin-Peng, YANG Ai-Bin, QI Zhong-Nan. Stability of Complexes Combined by Metal Ions (Na+, K+, Ca2+, Mg2+, Zn2+) and Guanine Isomers[J]. Acta Physico-Chimica Sinica, ;2010, 26(12): 3322-3328. doi: 10.3866/PKU.WHXB20101215 shu

Stability of Complexes Combined by Metal Ions (Na+, K+, Ca2+, Mg2+, Zn2+) and Guanine Isomers

  • Received Date: 13 August 2010
    Available Online: 3 November 2010

    Fund Project: 国家自然科学基金(20973084, 20573047) (20973084, 20573047)

  • The order of stability for complexes of differently coordinated metal ions (M+/2+=Na+, K+, Ca2+, Mg2+, Zn2+) with thirteen guanine isomers in gas (g) and aqueous (a) phases was systematically investigated at the B3LYP/6-311++G** level in combination with the polarized continuum model (PCM). Special effort was devoted to differences in the order of stability for aGnxM+/2+ (n is the label of guanine isomers, x denotes binding site of M+/2+ and guanine isomers) complexes that were obtained in aqueous solutions. An analysis was also performed to determine the reason for these differences with respect to the solute-solvent effect, binding energy, deformation energy, and relative free energy of the guanine isomers. The most stable complexes generated by the five metal ions were: aG1N2,N3Na+ , aG1N2,N3K+ , aG1O6,N7Ca2+ , aG1N2,N3Mg2+ (aG1O6,N7Mg2+), and aG2N3,N9Zn2+. The isomer of guanine in the most stable Zn2+ complex in the aqueous solution was G2 whereas in the other four most stable complexes it was G1, i.e., the different active sites in G1 generate the four most stable complexes. Additionally, we report on stable complexes in the gas phase such as gG3N1,O6K+, gG5N1,O6K+, gG3N1,O6Ca2+/Mg2+, and gG4O6,N7Ca2+/Mg2+.

  • 加载中
    1. [1]

      1. Potaman, V. N.; Soyfer, V. N. J. Biomol. Struct. Dyn., 1994, 11: 1035

    2. [2]

      2. Martin, R. B. Acc. Chem. Res., 1985, 18: 32

    3. [3]

      3. Muller, J.; Sigel, R. K. O.; Lippert, B. J. Inorg. Biochem., 2000, 79: 261

    4. [4]

      4. Saenger,W.; Cantor, C. R. Principles of nucleic acid structure. New York: Springer, 1984

    5. [5]

      5. Miguel, P. S.; Lax, P.;Willermann, M. Inorg. Chim. Acta, 2004, 357: 4552

    6. [6]

      6. Nakano, S. I.; Fujimoto, M.; Hara, H.; Sugimoto, N. Nucleic Acids Res., 1999, 27: 2957

    7. [7]

      7. Pettitt, B. M.; Rossky, P. J. J. Phys. Chem., 1986, 84: 5836

    8. [8]

      8. Oliva, R.; Cavallo, L. J. Phys. Chem. B, 2009, 113: 1567

    9. [9]

      9. Sabio, M.; Topiol, S.; Lumma,W. C. J. Phys. Chem., 1990, 94: 1366

    10. [10]

      10. Choi, M. Y.; Miller, R. E. J. Am. Chem. Soc., 2006, 128: 7320

    11. [11]

      11. Hanus, M.; Ryjacek, F.; Kabelac, M. J. Am. Chem. Soc., 2003, 125: 7678

    12. [12]

      12. Kabelac, M.; Hobza, P. J. Phys. Chem. B, 2006, 110: 14515

    13. [13]

      13. Mazzuca, D.; Russo, N.; Toscano, M. J. Phys. Chem. B, 2006, 110: 8815

    14. [14]

      14. Pedersen, D. B.; Simard, B. J. Phys. Chem. A, 2003, 107: 6464

    15. [15]

      15. Russo, N.; Toscano, M.; Grand, A. J. Am. Chem. Soc., 2001, 123: 10272

    16. [16]

      16. Russo, N. J. Phys. Chem. A, 2003, 107: 11533

    17. [17]

      17. Gresh, N. J. Phys. Chem. B, 1999, 103: 11415

    18. [18]

      18. Burda, J. V.; S?poner, J.; Hobza, P. J. Phys. Chem., 1996, 100: 7250

    19. [19]

      19. Hunter, K. C.; Millen, A. L.;Wetmore, S. D. J. Phys. Chem. B, 2007, 111: 1858

    20. [20]

      20. Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 03. Revision C.02.Wallingford, CT: Gaussian Inc., 2004

    21. [21]

      21. Kumar, A.; Sevilla, M. D.; Suhai, S. J. Phys. Chem. B, 2008, 112: 5189

    22. [22]

      22. Ai, H. Q.; Yang, A. B.; Li, Y. G. Acta Phys. -Chim. Sin., 2008, 24: 1047. [艾洪奇, 杨爱彬, 李允刚. 物理化学学报, 2008, 24: 1047. ]

    23. [23]

      23. Gustavsson, T.; Bányász, á.; Lazzarotto, E. J. Am. Chem. Soc., 2005, 128: 607

    24. [24]

      24. Shukla, M. K.; Jerzy, L. J. Phys. Chem. A, 2005, 1089: 7775

    25. [25]

      25. Gustavsson, T.; Sarkar, N.; Lazzarotto, E. J. Phys. Chem. B, 2006, 110: 12843

    26. [26]

      26. Boys, S. F. Mol. Phys., 1970, 19: 553


  • 加载中
    1. [1]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    2. [2]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    3. [3]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    4. [4]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    5. [5]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    6. [6]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    7. [7]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    8. [8]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    9. [9]

      Meng-Yin WangRuo-Bei HuangJian-Feng XiongJing-Hua TianJian-Feng LiZhong-Qun Tian . Critical Role and Recent Development of Separator in Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2307017-0. doi: 10.3866/PKU.WHXB202307017

    10. [10]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    11. [11]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    12. [12]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    13. [13]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    14. [14]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    15. [15]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    16. [16]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    17. [17]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    18. [18]

      Jianquan Liu Xiangshan Wang . Teaching Design and Practice of Naming Rules for Circular Isomer Configuration under the Guidance of Information Literacy. University Chemistry, 2025, 40(7): 352-358. doi: 10.12461/PKU.DXHX202409082

    19. [19]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    20. [20]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

Metrics
  • PDF Downloads(1279)
  • Abstract views(2938)
  • HTML views(66)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return