Citation: GAO Hai-Li, LIAO Shi-Jun, ZENG Jian-Huang, LIANG Zhen-Xing, XIE Yi-Chun. Preparation and Characterization of Platinum-Decorated Ru/C Catalyst with High Performance and Superior Poison Tolerance[J]. Acta Physico-Chimica Sinica, ;2010, 26(12): 3193-3198. doi: 10.3866/PKU.WHXB20101214 shu

Preparation and Characterization of Platinum-Decorated Ru/C Catalyst with High Performance and Superior Poison Tolerance

  • Received Date: 25 May 2010
    Available Online: 3 November 2010

    Fund Project: 国家自然科学基金(20673040, 20876062) (20673040, 20876062)国家高技术研究发展计划项目(863) (2009AA05Z119)资助 (863) (2009AA05Z119)

  • A platinum-decorated Ru/C catalyst with high platinum utilization efficiency, high performance, and high poisoning tolerance was prepared using a two-stage impregnation reduction method. We found that for anodic methanol oxidation the catalyst activity in terms of the Pt load was 1.9 and 1.5 times as that of Pt/C and PtRu/C alloy catalysts, respectively. These values are also higher than that of the commercial JM PtRu/C catalyst. The electrochemically active surface area of Ru@Pt/C was found to be 1.6 and 1.3 times as those of Pt/C and PtRu/C alloy catalysts, respectively. Furthermore, we found that the ratio of the forward peak current density (If) to the backward peak current density (Ib) reached 2.4, which was 2.7 times as that of the Pt/C catalyst. This implies that the Pt-decorated Ru/C catalyst possesses a high tolerance for the intermediate poisoning species. In addition, the stability of Ru@Pt/C was higher than that of Pt/C, PtRu/ C alloy and JM PtRu/C. The catalyst was characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The core-shell structure of the catalyst was determined by XRD and TEM. The high performance and high poisoning tolerance of Ru@Pt/C during the anodic oxidation of methanol make it a promising electrocatalyst for direct methanol fuel cells.

  • 加载中
    1. [1]

      1. Lin, R.; Luo, M. F.; Xin, Q.; Sun, G. Q. Catal. Lett., 2004, 93: 139

    2. [2]

      2. Li, Q.; He, R.; Jensen, J. O.; Bjerrum, N. J. Chem. Mater., 2003, 15: 4896

    3. [3]

      3. Whittingham, M. S.; Savinell, R. F.; Zawodzinski, T. Chem. Rev., 2004, 104: 4243

    4. [4]

      4. Shen, S. Y.; Zhao, T. S.; Xu, J. B.; Li, Y. S. J. Power Sources, 2010, 195: 1001

    5. [5]

      5. Micoud, F.; Maillard, F.; urgaud, A.; Chatenet, M. Electrochem. Commun., 2009, 11: 651

    6. [6]

      6. Han, D. M.; Guo, Z. P.; Zeng, R.; Kim, C. J.; Meng, Y. Z.; Liu, H. K. Int. J. Hydrog. Energy, 2009, 34: 2426

    7. [7]

      7. Jeon, M. K.; McGinn, P. J. J. Power Sources, 2009, 188: 427

    8. [8]

      8. Haug, A. T.; White, R. E.;Weidner, J.W.; Huang,W. J. Electrochem. Soc., 2008, 149: A862

    9. [9]

      9. Wei, Z. D.; Feng, Y. C.; Li, L.; Liao, M. J.; Fu, Y.; Sun, C. X.; Shao, Z. G.; Shen, P. K. J. Power Sources, 2008, 180: 84

    10. [10]

      10. Jiang, Q. Z.;Wu, X.; Shen, M.; Ma, Z. F.; Zhu, X. Y. Catal. Lett., 2008, 124: 434

    11. [11]

      11. Zeng, J.; Yang, J.; Lee, J. Y.; Zhou,W. J. Phys. Chem. B, 2006, 110: 24606

    12. [12]

      12. Liao, S.; Holmes, K. A.; Tsaprailis, H.; Birss, V. I. J. Am. Chem. Soc., 2006, 128: 3504

    13. [13]

      13. Kim, P.; Joo, J. B.; Kim,W.; Kim, J.; Song, I. K.; Yi, J. Catal. Lett., 2006, 112: 213

    14. [14]

      14. Rolison, D. R.; Hagans, P. L.; Swider, K. E.; Long, J.W. Langmuir, 1999, 15: 774

    15. [15]

      15. Chen, Y.; Tang, Y.W.;Wu,W.; Cao, J. M.; Liu, C. P.; Xing,W.; Lu, T. H. Chem. J. Chin. Univ., 2006, 27: 676. [陈煜, 唐亚文, 吴伟, 曹洁明, 刘长鹏, 邢巍, 陆天虹. 高等学校化学学报, 2006, 27: 676]

    16. [16]

      16. Zhao, D.; Xu, B. Q. Phys. Chem. Chem. Phys., 2006, 85: 106

    17. [17]

      17. Luo, J.;Wang, L.; Mott, D.; Njoki, P. N.; Lin, Y.; He, T.; Xu, Z.; Wanjana, B. N.; Lim, I. I. S.; Zhong, C. J. Adv. Mater., 2008, 20: 4342

    18. [18]

      18. Liu, Z.; Hu, J. E.;Wang, Q.; Gaskell, K.; Frenkel, A. I.; Jackson, G. S.; Eichhorn, B. J. Am. Chem. Soc., 2009, 131: 6924

    19. [19]

      19. Ando, Y.; Sasaki, K.; Adzic, R. Electrochem. Commun., 2009, 11: 1135

    20. [20]

      20. Alayoglu, S.; Nilekar, A. U.; Mavrikakis, M.; Eichhorn, B. Nature Mater., 2008, 7: 333

    21. [21]

      21. Chen, C. H.; Sarma, L. S.;Wang, D. Y.; Lai, F. J.; Andra, C. C. A.; Chang, S. H.; Liu, D. G.; Chen, C. C.; Lee, J. F.; Hwang, B. J. ChemCatChem, 2010, 2: 159

    22. [22]

      22. Liu, J. M.; Meng, H.; Li, J. L.; Liao, S. J.; Bu, J. H. Fuel Cells, 2007, 7: 402

    23. [23]

      23. Gasteiger, H. A.; Markovi, N.; Ross, P. N.; Cairns, E. J. J. Electrochem. Soc., 1994, 141: 1795

    24. [24]

      24. Lobato, J.; Canizares, P.; Rodri , M. A.; Linares, J. J. Appl. Catal. B-Environ., 2009, 91: 269

    25. [25]

      25. Chi, C. F.; Yang, M. C.;Weng, H. S. J. Power Sources, 2009, 193: 462

    26. [26]

      26. Bock, C.; Paque, C.; Couillard, M.; Botton, G. A.; MacDougall, B. R. J. Am. Chem. Soc., 2004, 126: 8028

    27. [27]

      27. Liang, Y.; Li, J.; Xu, Q. C.; Hu, R. Z.; Lin, J. D.; Liao, D.W. J. Alloy. Compd., 2008, 465: 296

    28. [28]

      28. Liu, Z.; Ling, X. Y.; Su, X.; Lee, J. Y. J. Phys. Chem. B, 2004, 108: 8234

    29. [29]

      29. Maiyalagan, T. J. Solid State Electrochem., 2009, 13: 1561


  • 加载中
    1. [1]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    2. [2]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    3. [3]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    4. [4]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    5. [5]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    6. [6]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    7. [7]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    8. [8]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    10. [10]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    11. [11]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    12. [12]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    13. [13]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    14. [14]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    15. [15]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    16. [16]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    17. [17]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    18. [18]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    19. [19]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    20. [20]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

Metrics
  • PDF Downloads(1625)
  • Abstract views(3040)
  • HTML views(1)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return