Citation: ZHANG Jing-Jing, GAO Hong-Wei, WEI Tao, WANG Chao-Jie. Molecular Design of 3,3′-Azobis-1,2,4,5-tetrazine-Based High-Energy Density Materials[J]. Acta Physico-Chimica Sinica, ;2010, 26(12): 3337-3344. doi: 10.3866/PKU.WHXB20101211 shu

Molecular Design of 3,3′-Azobis-1,2,4,5-tetrazine-Based High-Energy Density Materials

  • Received Date: 19 July 2010
    Available Online: 1 November 2010

    Fund Project: 浙江省自然科学基金(Y5080043)资助项目 (Y5080043)

  • We systematically studied the heats of formation (HOFs) for a series of 3,3′-azobis-1,2,4, 5-tetrazine derivatives by density functional theory (DFT). The results show that the —N3 group plays a very important role in increasing the HOFs for these derivatives. An analysis of the bond dissociation energies for the weakest bonds indicates that the attachment of —NH2 or —N3 group to 3,3′-azobis-1,2,4, 5-tetrazine is favorable in enhancing its thermal stability. The calculated detonation velocities (D) and pressures (p) indicates that —NO2 or —NF2 largely enhances the detonation performance of the derivatives. Considering the detonation performance and the thermal stability, the three derivatives may be regarded to be promising candidates for high-energy density materials (HEDMs).

  • 加载中
    1. [1]

      1. Huynh, M. H. V.; Hiskey, M. A.; Pollard, C. J.; Montoya, D. P.; Hartline, E. L.; Gilardi, R. D. J. Energ. Mater., 2004, 22: 217

    2. [2]

      2. Huynh, M. H. V.; Hiskey, M. A.; Archuleta, J. G.; Roemer, E. L.; Gilardi, R. D. Angew. Chem. Int. Edit., 2004, 43: 5658

    3. [3]

      3. Talawar, M. B.; Sivabalan, R.; Senthilkumar, N.; Prabhu, G.; Asthana, S. N. J. Hazard. Mater., 2004, 113: 11

    4. [4]

      4. Wei, T.; Zhu,W. H.; Zhang, X.W.; Li, Y. F.; Xiao, H. M. J. Phys. Chem. A, 2009, 113: 9404

    5. [5]

      5. Wei, T.; Zhu,W. H.; Zhang, J. J.; Xiao, H. M. J. Hazard. Mater., 2010, 179: 581

    6. [6]

      6. Chavez, D. E.; Hiskey, M. A.; Gilardi, R. D. Org. Lett., 2004, 6: 2889

    7. [7]

      7. Chavez, D. E.; Hiskey, M. A. J. Energ. Mater., 1999, 17: 357

    8. [8]

      8. Wilcox, C. F.; Zhang, Y. X.; Bauer, S. H. J. Energ. Mater., 2002, 20: 71

    9. [9]

      9. Chavez, D. E.; Hiskey, M. A.; Gilardi, R. D. Angew. Chem. Int. Edit., 2000, 39: 1791

    10. [10]

      10. Kerth, J.; L?bbecke, S. Propellants Explos. Pyrotech., 2002, 27: 111

    11. [11]

      11. L?bbecke, S.; Schuppler, H.; Schweikert,W. J. Therm. Anal. Calorim., 2003, 72: 453

    12. [12]

      12. Chavez, D. E.; Hiskey, M. A.; Naud, D. L. Propellants Explos. Pyrotech., 2004, 29: 209

    13. [13]

      13. Rice, B. M.; Hare, J. Thermochim. Acta, 2002, 384: 377

    14. [14]

      14. Muthurajan, H.; Sivabalan, R.; Talawar, M. B.; Anniyappan, M.; Venu palan, S. J. Hazard. Mater., 2006, 133: 30

    15. [15]

      15. Hohenberg, P.; Kohn,W. Phys. Rev. B, 1964, 136: 864

    16. [16]

      16. Kohn,W.; Sham, L. J. Phys. Rev. A, 1965, 140: 1133

    17. [17]

      17. Salahub D. R.; Zerner, M. C. The challenge of d and f electrons. Washington D.C.: ACS, 1989

    18. [18]

      18. Parr, R. G.; Yang,W. Density-functional theory of atoms and molecules. Oxford: Oxford University Press, 1989: 1-333

    19. [19]

      19. Chen, Z. X.; Xiao, J. M.; Xiao, H. M.; Chiu, Y. N. J. Phys. Chem. A, 1999, 103: 8062

    20. [20]

      20. Xiao, H. M.; Chen, Z. X. The modern theory for tetrazole chemistry. Beijing: Science Press, 2000: 128-158

    21. [21]

      [肖鹤鸣, 陈兆旭. 四唑化学的现代理论. 北京: 科学出版社, 2000: 128-158]

    22. [22]

      21. Chen, P. C.; Chieh, Y. C.; Tzeng, S. C. J. Mol. Struct. -Theochem, 2003, 634: 215

    23. [23]

      22. Ju, X. H.; Li, Y. M.; Xiao, H. M. J. Phys. Chem. A, 2005, 109: 934

    24. [24]

      23. Hahre,W. J.; Radom, L.; Schleyer, P. V. R.; Pole, J. A. Ab initio molecular orbital theory. New York:Wiley-Interscience, 1986

    25. [25]

      24. Wang, F.; Xu, X. J.; Xiao, H. M.; Zhang, J. Acta Chim. Sin., 2003, 61: 1939

    26. [26]

      [王飞, 许晓娟, 肖鹤鸣, 张骥. 化学学报, 2003, 61: 1939]

    27. [27]

      25. Ju, X. H.;Wang, X.; Bei, F. L. J. Comput. Chem., 2005, 26: 1263

    28. [28]

      26. (a) David, R. L. Handbook of chemistry and physics. 84th ed. CRC Press, 2003-2004: sect 5 (b) Afeefy, H. Y.; Liebman, J. F.; Stein, S. E.“Neutral thermochemical data”in NIST chemistry webbook, NIST standard reference database number 69. Eds. Linstrom, P. J.; Mallard, W. G. Gaithersburg, MD: National Institute of Standards and Technology, 2000 (http://webbook.nist. v) (c) Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.; Mallard,W. G. J. Phys. Chem. Ref. Data, 1988: Suppl. No.1

    29. [29]

      27. Curtiss, L. A.; Raghavachari, K.; Trucks, G.W.; Pople, J. A. J. Chem. Phys., 1991, 94: 7221

    30. [30]

      28. Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A. J. Chem. Phys., 1997, 106: 1063

    31. [31]

      29. Benson, S.W. Thermochemical kinetics. 2nd ed. New York: Wiley-Interscience, 1976

    32. [32]

      30. Mills, I.; Cvitas, T.; Homann, K.; Kallay, N.; Kuchitsu, K. Quantities, units, and symbols in physical chemistry. Oxford: Blackwell Scientific Publications, 1988: 1-233

    33. [33]

      31. Blanksby, S. J.; Ellison, G. B. Acc. Chem. Res., 2003, 36: 255

    34. [34]

      32. Kamlet, M. J.; Jacobs, S. J. J. Chem. Phys., 1968, 48: 23

    35. [35]

      33. Rice, B. M.; Hare, J. J.; Byrd, E. F. C. J. Phys. Chem. A, 2007, 111: 10874

    36. [36]

      34. Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09. Revision A.01.Wallingford, CT: Gaussian Inc., 2009

    37. [37]

      35. Scott, A. P.; Radom, L. J. Phys. Chem., 1996, 100: 16502

    38. [38]

      36. Huynh, M. H. V.; Hiskey, M. A.; Chavez, D. E.; Naud, D. L.; Gilardi, R. D. J. Am. Chem. Soc., 2005, 127: 12537

    39. [39]

      37. Owens, F. J. J. Mol. Struct. -Theochem, 1996, 370: 11

    40. [40]

      38. Rice, B. M.; Sahu, S.; Owens, F. J. J. Mol. Struct. -Theochem, 1996, 583: 69

    41. [41]

      39. Talawar, M. B.; Sivabalan, R.; Mukundan, T.; Muthurajan, H.; Sikder, A. K.; Gandhe, B. R.; Subhananda, R. A. J. Hazard. Mater., 2009, 161: 589

    42. [42]

      40. Türker, L.; Atalar, T.; Gümüs, S.; ?amur, Y. J. Hazard. Mater., 2009, 167: 440

    43. [43]

      41. Smith, M.W.; Cliff, M. D. NTO-Based explosive formulations: a technology review. Australia: DSTO-TR-0796, 1999: 19-20

    44. [44]

      42. Gálvez-Ruiz, J. C.; Holl, G.; Karaghiosoff, K.; Klap?tke, T. M. L?hnwitz, K.; Mayer, P.; N?th, H.; Polborn, K.; Rohbogner, C. J.; Suter, M.;Weigand, J. J. Inorg. Chem., 2005, 44: 4237

    45. [45]

      43. Zhang, M. X.; Eaton, P. E.; Gilardi, R. D. Angew. Chem. Int. Edit., 2000, 39: 401


  • 加载中
    1. [1]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    2. [2]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    3. [3]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    4. [4]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    5. [5]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    6. [6]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    7. [7]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    8. [8]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    9. [9]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    10. [10]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    11. [11]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    12. [12]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    13. [13]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    14. [14]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    15. [15]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    16. [16]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    17. [17]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    18. [18]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    19. [19]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    20. [20]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

Metrics
  • PDF Downloads(1198)
  • Abstract views(4923)
  • HTML views(4)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return