Citation: ZHANG Jing-Jing, GAO Hong-Wei, WEI Tao, WANG Chao-Jie. Molecular Design of 3,3′-Azobis-1,2,4,5-tetrazine-Based High-Energy Density Materials[J]. Acta Physico-Chimica Sinica, ;2010, 26(12): 3337-3344. doi: 10.3866/PKU.WHXB20101211 shu

Molecular Design of 3,3′-Azobis-1,2,4,5-tetrazine-Based High-Energy Density Materials

  • Received Date: 19 July 2010
    Available Online: 1 November 2010

    Fund Project: 浙江省自然科学基金(Y5080043)资助项目 (Y5080043)

  • We systematically studied the heats of formation (HOFs) for a series of 3,3′-azobis-1,2,4, 5-tetrazine derivatives by density functional theory (DFT). The results show that the —N3 group plays a very important role in increasing the HOFs for these derivatives. An analysis of the bond dissociation energies for the weakest bonds indicates that the attachment of —NH2 or —N3 group to 3,3′-azobis-1,2,4, 5-tetrazine is favorable in enhancing its thermal stability. The calculated detonation velocities (D) and pressures (p) indicates that —NO2 or —NF2 largely enhances the detonation performance of the derivatives. Considering the detonation performance and the thermal stability, the three derivatives may be regarded to be promising candidates for high-energy density materials (HEDMs).

  • 加载中
    1. [1]

      1. Huynh, M. H. V.; Hiskey, M. A.; Pollard, C. J.; Montoya, D. P.; Hartline, E. L.; Gilardi, R. D. J. Energ. Mater., 2004, 22: 217

    2. [2]

      2. Huynh, M. H. V.; Hiskey, M. A.; Archuleta, J. G.; Roemer, E. L.; Gilardi, R. D. Angew. Chem. Int. Edit., 2004, 43: 5658

    3. [3]

      3. Talawar, M. B.; Sivabalan, R.; Senthilkumar, N.; Prabhu, G.; Asthana, S. N. J. Hazard. Mater., 2004, 113: 11

    4. [4]

      4. Wei, T.; Zhu,W. H.; Zhang, X.W.; Li, Y. F.; Xiao, H. M. J. Phys. Chem. A, 2009, 113: 9404

    5. [5]

      5. Wei, T.; Zhu,W. H.; Zhang, J. J.; Xiao, H. M. J. Hazard. Mater., 2010, 179: 581

    6. [6]

      6. Chavez, D. E.; Hiskey, M. A.; Gilardi, R. D. Org. Lett., 2004, 6: 2889

    7. [7]

      7. Chavez, D. E.; Hiskey, M. A. J. Energ. Mater., 1999, 17: 357

    8. [8]

      8. Wilcox, C. F.; Zhang, Y. X.; Bauer, S. H. J. Energ. Mater., 2002, 20: 71

    9. [9]

      9. Chavez, D. E.; Hiskey, M. A.; Gilardi, R. D. Angew. Chem. Int. Edit., 2000, 39: 1791

    10. [10]

      10. Kerth, J.; L?bbecke, S. Propellants Explos. Pyrotech., 2002, 27: 111

    11. [11]

      11. L?bbecke, S.; Schuppler, H.; Schweikert,W. J. Therm. Anal. Calorim., 2003, 72: 453

    12. [12]

      12. Chavez, D. E.; Hiskey, M. A.; Naud, D. L. Propellants Explos. Pyrotech., 2004, 29: 209

    13. [13]

      13. Rice, B. M.; Hare, J. Thermochim. Acta, 2002, 384: 377

    14. [14]

      14. Muthurajan, H.; Sivabalan, R.; Talawar, M. B.; Anniyappan, M.; Venu palan, S. J. Hazard. Mater., 2006, 133: 30

    15. [15]

      15. Hohenberg, P.; Kohn,W. Phys. Rev. B, 1964, 136: 864

    16. [16]

      16. Kohn,W.; Sham, L. J. Phys. Rev. A, 1965, 140: 1133

    17. [17]

      17. Salahub D. R.; Zerner, M. C. The challenge of d and f electrons. Washington D.C.: ACS, 1989

    18. [18]

      18. Parr, R. G.; Yang,W. Density-functional theory of atoms and molecules. Oxford: Oxford University Press, 1989: 1-333

    19. [19]

      19. Chen, Z. X.; Xiao, J. M.; Xiao, H. M.; Chiu, Y. N. J. Phys. Chem. A, 1999, 103: 8062

    20. [20]

      20. Xiao, H. M.; Chen, Z. X. The modern theory for tetrazole chemistry. Beijing: Science Press, 2000: 128-158

    21. [21]

      [肖鹤鸣, 陈兆旭. 四唑化学的现代理论. 北京: 科学出版社, 2000: 128-158]

    22. [22]

      21. Chen, P. C.; Chieh, Y. C.; Tzeng, S. C. J. Mol. Struct. -Theochem, 2003, 634: 215

    23. [23]

      22. Ju, X. H.; Li, Y. M.; Xiao, H. M. J. Phys. Chem. A, 2005, 109: 934

    24. [24]

      23. Hahre,W. J.; Radom, L.; Schleyer, P. V. R.; Pole, J. A. Ab initio molecular orbital theory. New York:Wiley-Interscience, 1986

    25. [25]

      24. Wang, F.; Xu, X. J.; Xiao, H. M.; Zhang, J. Acta Chim. Sin., 2003, 61: 1939

    26. [26]

      [王飞, 许晓娟, 肖鹤鸣, 张骥. 化学学报, 2003, 61: 1939]

    27. [27]

      25. Ju, X. H.;Wang, X.; Bei, F. L. J. Comput. Chem., 2005, 26: 1263

    28. [28]

      26. (a) David, R. L. Handbook of chemistry and physics. 84th ed. CRC Press, 2003-2004: sect 5 (b) Afeefy, H. Y.; Liebman, J. F.; Stein, S. E.“Neutral thermochemical data”in NIST chemistry webbook, NIST standard reference database number 69. Eds. Linstrom, P. J.; Mallard, W. G. Gaithersburg, MD: National Institute of Standards and Technology, 2000 (http://webbook.nist. v) (c) Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.; Mallard,W. G. J. Phys. Chem. Ref. Data, 1988: Suppl. No.1

    29. [29]

      27. Curtiss, L. A.; Raghavachari, K.; Trucks, G.W.; Pople, J. A. J. Chem. Phys., 1991, 94: 7221

    30. [30]

      28. Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A. J. Chem. Phys., 1997, 106: 1063

    31. [31]

      29. Benson, S.W. Thermochemical kinetics. 2nd ed. New York: Wiley-Interscience, 1976

    32. [32]

      30. Mills, I.; Cvitas, T.; Homann, K.; Kallay, N.; Kuchitsu, K. Quantities, units, and symbols in physical chemistry. Oxford: Blackwell Scientific Publications, 1988: 1-233

    33. [33]

      31. Blanksby, S. J.; Ellison, G. B. Acc. Chem. Res., 2003, 36: 255

    34. [34]

      32. Kamlet, M. J.; Jacobs, S. J. J. Chem. Phys., 1968, 48: 23

    35. [35]

      33. Rice, B. M.; Hare, J. J.; Byrd, E. F. C. J. Phys. Chem. A, 2007, 111: 10874

    36. [36]

      34. Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09. Revision A.01.Wallingford, CT: Gaussian Inc., 2009

    37. [37]

      35. Scott, A. P.; Radom, L. J. Phys. Chem., 1996, 100: 16502

    38. [38]

      36. Huynh, M. H. V.; Hiskey, M. A.; Chavez, D. E.; Naud, D. L.; Gilardi, R. D. J. Am. Chem. Soc., 2005, 127: 12537

    39. [39]

      37. Owens, F. J. J. Mol. Struct. -Theochem, 1996, 370: 11

    40. [40]

      38. Rice, B. M.; Sahu, S.; Owens, F. J. J. Mol. Struct. -Theochem, 1996, 583: 69

    41. [41]

      39. Talawar, M. B.; Sivabalan, R.; Mukundan, T.; Muthurajan, H.; Sikder, A. K.; Gandhe, B. R.; Subhananda, R. A. J. Hazard. Mater., 2009, 161: 589

    42. [42]

      40. Türker, L.; Atalar, T.; Gümüs, S.; ?amur, Y. J. Hazard. Mater., 2009, 167: 440

    43. [43]

      41. Smith, M.W.; Cliff, M. D. NTO-Based explosive formulations: a technology review. Australia: DSTO-TR-0796, 1999: 19-20

    44. [44]

      42. Gálvez-Ruiz, J. C.; Holl, G.; Karaghiosoff, K.; Klap?tke, T. M. L?hnwitz, K.; Mayer, P.; N?th, H.; Polborn, K.; Rohbogner, C. J.; Suter, M.;Weigand, J. J. Inorg. Chem., 2005, 44: 4237

    45. [45]

      43. Zhang, M. X.; Eaton, P. E.; Gilardi, R. D. Angew. Chem. Int. Edit., 2000, 39: 401


  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    5. [5]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    6. [6]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    9. [9]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    10. [10]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    11. [11]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    12. [12]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    13. [13]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    14. [14]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    15. [15]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    16. [16]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    17. [17]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    18. [18]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    19. [19]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    20. [20]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

Metrics
  • PDF Downloads(1198)
  • Abstract views(4975)
  • HTML views(7)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return