Citation:
ZHANG Jing-Jing, GAO Hong-Wei, WEI Tao, WANG Chao-Jie. Molecular Design of 3,3′-Azobis-1,2,4,5-tetrazine-Based High-Energy Density Materials[J]. Acta Physico-Chimica Sinica,
;2010, 26(12): 3337-3344.
doi:
10.3866/PKU.WHXB20101211
-
We systematically studied the heats of formation (HOFs) for a series of 3,3′-azobis-1,2,4, 5-tetrazine derivatives by density functional theory (DFT). The results show that the —N3 group plays a very important role in increasing the HOFs for these derivatives. An analysis of the bond dissociation energies for the weakest bonds indicates that the attachment of —NH2 or —N3 group to 3,3′-azobis-1,2,4, 5-tetrazine is favorable in enhancing its thermal stability. The calculated detonation velocities (D) and pressures (p) indicates that —NO2 or —NF2 largely enhances the detonation performance of the derivatives. Considering the detonation performance and the thermal stability, the three derivatives may be regarded to be promising candidates for high-energy density materials (HEDMs).
-
-
-
[1]
1. Huynh, M. H. V.; Hiskey, M. A.; Pollard, C. J.; Montoya, D. P.; Hartline, E. L.; Gilardi, R. D. J. Energ. Mater., 2004, 22: 217
-
[2]
2. Huynh, M. H. V.; Hiskey, M. A.; Archuleta, J. G.; Roemer, E. L.; Gilardi, R. D. Angew. Chem. Int. Edit., 2004, 43: 5658
-
[3]
3. Talawar, M. B.; Sivabalan, R.; Senthilkumar, N.; Prabhu, G.; Asthana, S. N. J. Hazard. Mater., 2004, 113: 11
-
[4]
4. Wei, T.; Zhu,W. H.; Zhang, X.W.; Li, Y. F.; Xiao, H. M. J. Phys. Chem. A, 2009, 113: 9404
-
[5]
5. Wei, T.; Zhu,W. H.; Zhang, J. J.; Xiao, H. M. J. Hazard. Mater., 2010, 179: 581
-
[6]
6. Chavez, D. E.; Hiskey, M. A.; Gilardi, R. D. Org. Lett., 2004, 6: 2889
-
[7]
7. Chavez, D. E.; Hiskey, M. A. J. Energ. Mater., 1999, 17: 357
-
[8]
8. Wilcox, C. F.; Zhang, Y. X.; Bauer, S. H. J. Energ. Mater., 2002, 20: 71
-
[9]
9. Chavez, D. E.; Hiskey, M. A.; Gilardi, R. D. Angew. Chem. Int. Edit., 2000, 39: 1791
-
[10]
10. Kerth, J.; L?bbecke, S. Propellants Explos. Pyrotech., 2002, 27: 111
-
[11]
11. L?bbecke, S.; Schuppler, H.; Schweikert,W. J. Therm. Anal. Calorim., 2003, 72: 453
-
[12]
12. Chavez, D. E.; Hiskey, M. A.; Naud, D. L. Propellants Explos. Pyrotech., 2004, 29: 209
-
[13]
13. Rice, B. M.; Hare, J. Thermochim. Acta, 2002, 384: 377
-
[14]
14. Muthurajan, H.; Sivabalan, R.; Talawar, M. B.; Anniyappan, M.; Venu palan, S. J. Hazard. Mater., 2006, 133: 30
-
[15]
15. Hohenberg, P.; Kohn,W. Phys. Rev. B, 1964, 136: 864
-
[16]
16. Kohn,W.; Sham, L. J. Phys. Rev. A, 1965, 140: 1133
-
[17]
17. Salahub D. R.; Zerner, M. C. The challenge of d and f electrons. Washington D.C.: ACS, 1989
-
[18]
18. Parr, R. G.; Yang,W. Density-functional theory of atoms and molecules. Oxford: Oxford University Press, 1989: 1-333
-
[19]
19. Chen, Z. X.; Xiao, J. M.; Xiao, H. M.; Chiu, Y. N. J. Phys. Chem. A, 1999, 103: 8062
-
[20]
20. Xiao, H. M.; Chen, Z. X. The modern theory for tetrazole chemistry. Beijing: Science Press, 2000: 128-158
-
[21]
[肖鹤鸣, 陈兆旭. 四唑化学的现代理论. 北京: 科学出版社, 2000: 128-158]
-
[22]
21. Chen, P. C.; Chieh, Y. C.; Tzeng, S. C. J. Mol. Struct. -Theochem, 2003, 634: 215
-
[23]
22. Ju, X. H.; Li, Y. M.; Xiao, H. M. J. Phys. Chem. A, 2005, 109: 934
-
[24]
23. Hahre,W. J.; Radom, L.; Schleyer, P. V. R.; Pole, J. A. Ab initio molecular orbital theory. New York:Wiley-Interscience, 1986
-
[25]
24. Wang, F.; Xu, X. J.; Xiao, H. M.; Zhang, J. Acta Chim. Sin., 2003, 61: 1939
-
[26]
[王飞, 许晓娟, 肖鹤鸣, 张骥. 化学学报, 2003, 61: 1939]
-
[27]
25. Ju, X. H.;Wang, X.; Bei, F. L. J. Comput. Chem., 2005, 26: 1263
-
[28]
26. (a) David, R. L. Handbook of chemistry and physics. 84th ed. CRC Press, 2003-2004: sect 5 (b) Afeefy, H. Y.; Liebman, J. F.; Stein, S. E.“Neutral thermochemical data”in NIST chemistry webbook, NIST standard reference database number 69. Eds. Linstrom, P. J.; Mallard, W. G. Gaithersburg, MD: National Institute of Standards and Technology, 2000 (http://webbook.nist. v) (c) Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.; Mallard,W. G. J. Phys. Chem. Ref. Data, 1988: Suppl. No.1
-
[29]
27. Curtiss, L. A.; Raghavachari, K.; Trucks, G.W.; Pople, J. A. J. Chem. Phys., 1991, 94: 7221
-
[30]
28. Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Pople, J. A. J. Chem. Phys., 1997, 106: 1063
-
[31]
29. Benson, S.W. Thermochemical kinetics. 2nd ed. New York: Wiley-Interscience, 1976
-
[32]
30. Mills, I.; Cvitas, T.; Homann, K.; Kallay, N.; Kuchitsu, K. Quantities, units, and symbols in physical chemistry. Oxford: Blackwell Scientific Publications, 1988: 1-233
-
[33]
31. Blanksby, S. J.; Ellison, G. B. Acc. Chem. Res., 2003, 36: 255
-
[34]
32. Kamlet, M. J.; Jacobs, S. J. J. Chem. Phys., 1968, 48: 23
-
[35]
33. Rice, B. M.; Hare, J. J.; Byrd, E. F. C. J. Phys. Chem. A, 2007, 111: 10874
-
[36]
34. Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09. Revision A.01.Wallingford, CT: Gaussian Inc., 2009
-
[37]
35. Scott, A. P.; Radom, L. J. Phys. Chem., 1996, 100: 16502
-
[38]
36. Huynh, M. H. V.; Hiskey, M. A.; Chavez, D. E.; Naud, D. L.; Gilardi, R. D. J. Am. Chem. Soc., 2005, 127: 12537
-
[39]
37. Owens, F. J. J. Mol. Struct. -Theochem, 1996, 370: 11
-
[40]
38. Rice, B. M.; Sahu, S.; Owens, F. J. J. Mol. Struct. -Theochem, 1996, 583: 69
-
[41]
39. Talawar, M. B.; Sivabalan, R.; Mukundan, T.; Muthurajan, H.; Sikder, A. K.; Gandhe, B. R.; Subhananda, R. A. J. Hazard. Mater., 2009, 161: 589
-
[42]
40. Türker, L.; Atalar, T.; Gümüs, S.; ?amur, Y. J. Hazard. Mater., 2009, 167: 440
-
[43]
41. Smith, M.W.; Cliff, M. D. NTO-Based explosive formulations: a technology review. Australia: DSTO-TR-0796, 1999: 19-20
-
[44]
42. Gálvez-Ruiz, J. C.; Holl, G.; Karaghiosoff, K.; Klap?tke, T. M. L?hnwitz, K.; Mayer, P.; N?th, H.; Polborn, K.; Rohbogner, C. J.; Suter, M.;Weigand, J. J. Inorg. Chem., 2005, 44: 4237
-
[45]
43. Zhang, M. X.; Eaton, P. E.; Gilardi, R. D. Angew. Chem. Int. Edit., 2000, 39: 401
-
[1]
-
-
-
[1]
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
-
[2]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[3]
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
-
[4]
Yupeng TANG , Haiying YANG , Fan JIN , Nan LI . Hydrogen storage properties of C6S6Li6: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1827-1839. doi: 10.11862/CJIC.20240460
-
[5]
Wei Sun , Yongjing Wang , Kun Xiang , Saishuai Bai , Haitao Wang , Jing Zou , Arramel , Jizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015
-
[6]
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
-
[7]
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
-
[8]
Youlin SI , Shuquan SUN , Junsong YANG , Zijun BIE , Yan CHEN , Li LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061
-
[9]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[10]
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
-
[11]
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
-
[12]
Zhengkun QIN , Zicong PAN , Hui TIAN , Wanyi ZHANG , Mingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429
-
[13]
Tongqi Ye , Yanqing Wang , Qi Wang , Huaiping Cong , Xianghua Kong , Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128
-
[14]
Xiaochen Zhang , Fei Yu , Jie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026
-
[15]
Tong Zhou , Xue Liu , Liang Zhao , Mingtao Qiao , Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020
-
[16]
Yahui HAN , Jinjin ZHAO , Ning REN , Jianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395
-
[17]
Qiqi Li , Su Zhang , Yuting Jiang , Linna Zhu , Nannan Guo , Jing Zhang , Yutong Li , Tong Wei , Zhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009
-
[18]
Kun Wang , Tianxue Gong , Yaohuang Huang , Boyang Han , Hanxiao Yang , Pavlo O. Dral , Weiwei Fang . Bornylimidazo[1,5–a]pyridin-3-ylidene allylic Pd catalyst with optimal electronic and steric properties for synthesis of 3,3′-disubstituted oxindoles. Chinese Chemical Letters, 2025, 36(7): 110539-. doi: 10.1016/j.cclet.2024.110539
-
[19]
Yadan Luo , Hao Zheng , Xin Li , Fengmin Li , Hua Tang , Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052
-
[20]
Zeyuan WANG , Songzhi ZHENG , Hao LI , Jingbo WENG , Wei WANG , Yang WANG , Weihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021
-
[1]
Metrics
- PDF Downloads(1198)
- Abstract views(5100)
- HTML views(9)