Citation: ZENG Han, LIAO Ling-Wen, LI Ming-Fang, TAO Qian, KANG Jing, CHEN Yan-Xia. Poly Aryl Amide and Multiwalled Carbon Nanotube Composite Supported Laccase Electrode and Its Electrochemical Behavior[J]. Acta Physico-Chimica Sinica, ;2010, 26(12): 3217-3224. doi: 10.3866/PKU.WHXB20101208 shu

Poly Aryl Amide and Multiwalled Carbon Nanotube Composite Supported Laccase Electrode and Its Electrochemical Behavior

  • Received Date: 7 July 2010
    Available Online: 29 October 2010

    Fund Project: 国家自然科学基金(20773116) (20773116)国家杰出青年基金(20474060)资助项目 (20474060)

  • A novel strategy for the immobilization of laccase onto a glassy carbon electrode with high stability and electrocatalytic performance is presented. Laccase is attached to a matrix of mixed poly aryl amide (PAA) and multiwalled carbon nanotubes (MWCNTs) (denoted Lac/PAA-MWCNTs/GCE) by covalently bonding the surface amine group of laccase to the terminal carboxyl group of PAA and hydrophobic-hydrophobic interaction between MWCNTs and the laccase. The PAA backbone avoids the detachment and denaturing of the laccase, and the intermixed MWCNTs provide high electronic conductivity. The loading of laccase is 56.0 mg·g-1 and more than 68% shows electrochemical activity. The electrode delivers direct electron transfer between the redox center of the laccase and the electrode with two pairs of redox peaks at 0.73 and 0.38 V, which is close to the formal potential of the T1 and T2 Cu-sites (0.78 and 0.39 V (vs NHE)), respectively. The onset potential for O2 reduction reaction (ORR) is ca 0.55 V in a phosphate buffer solution (pH=4.4). The Michaelis constant (KM) of the Lac/PAA-MWCNTs/GEs for O2 is 55.8 μmol·L-1 and the detection limit of oxygen reaches 0.57 μmol·L-1. After 2 months of storage at 4 °C the ORR activity of the Lac/PAA-MWCNTs/GC electrode retains ca 86% of its initial values and the peak potential of the ORR shifts negatively by ca 50 mV. Given the excellent catalytic performance towards ORR and its high stability this strategy will be widely applicable to the development of an enzyme-based cathode for biofuel cells and amperometric biosensors for oxygen.

  • 加载中
    1. [1]

      1. Xu, F. Biochemistry, 1996, 35: 7608

    2. [2]

      2. Piontek, K.; Antorini, M.; Choinowski, T. J. Biol. Chem., 2002, 277: 37663

    3. [3]

      3. Zheng,W.; Li, Q. F.; Yan, Y. M.; Zhang, J.; Mao, L. Q. Electroanalysis, 2006, 18: 587

    4. [4]

      4. Yarapolov, A. I.; Kharybin, A. N.; Emneus, J.; Marko-Varga, G.; rton, L. Bioelectrochem. Bioenerg., 1996, 40: 49

    5. [5]

      5. Shleev, S.; Kasmi, A. E.; Ruzgas, T.; rton, L. Electrochem. Commun., 2004, 6: 934

    6. [6]

      6. Liu, Y.; Qu, X. H.; Guo, H.W.; Chen, H. J.; Liu, B. F.; Dong, S. J. Biosensors & Bioelectronics, 2006, 21: 2195

    7. [7]

      7. Rahman, M. A.; Noh, H. B.; Shim, Y. B. Anal. Chem., 2008, 80: 8020

    8. [8]

      8. Tarasevich, M. R.; Bogdanovskaya, V. A.; Kuznetsova, L. N. Russ. J. Phys. Chem., 2001, 37: 969

    9. [9]

      9. Stolarczyk, K.; Nazaruk, E.; Rogalski, J.; Bileswicz, R. Electrochimica Acta, 2008, 53: 3983

    10. [10]

      10. Blanford, C. F.; Heath, R. S.; Armstrong, F. A. Chem. Commun., 2007: 1710

    11. [11]

      11. Blanford, C. F.; Foster, C. E.; Heath, R. E.; Armstrong, F. A. Faraday Discuss., 2008, 140: 319

    12. [12]

      12. Farneth,W. E.; Diner, B. A.; Gierke, T. D.; D'Amore, M. B. J. Electroanal. Chem., 2005, 581: 190

    13. [13]

      13. Katz, E.; Sheeney-Haj-Ichia, L.;Willner, I. Angew. Chem. Int. Edit., 2004, 43: 3292

    14. [14]

      14. Barriere, F.; Ferry, Y.; Rochefort, D.; Leech, D. Electrochem. Commun., 2004, 6: 237

    15. [15]

      15. Ohara, T. J.; Raja palan, R.; Heller, A. Anal. Chem., 1993, 65: 3512

    16. [16]

      16. Trudeau, F.; Daigle, F.; Leech, D. Anal. Chem., 1997, 69: 882

    17. [17]

      17. Ackermann, Y.; Guschin, D. A.; Eckhard, K.; Shleev, S.; Schuhmann, W. Electrochem. Commun., 2010, 12: 640

    18. [18]

      18. Klis, M.; Karbarz, M.; Stojek, Z.; Rogalski, J.; Bilewicz, R. J. Phys. Chem. B, 2009, 113: 6062

    19. [19]

      19. Qiu, H. J.; Xu , C. X.; Huang, X. R.; Ding, Y.; Qu Y. B.; Gao, P. J. J. Phys. Chem. C, 2008, 112: 14781

    20. [20]

      20. Stolarczyk, K.; Nazaruk, E.; Rogalski, J.; Bilewicz, R. Electrochem. Commun., 2007, 9: 115

    21. [21]

      21. Fei, J. F.; Song, H. Y.; Palmore, G. T. R. Chem. Mater., 2007, 19(7): 1565

    22. [22]

      22. Katz, E.;Willner, I.; Kotlyar, A. B. J. Electroanal. Chem., 1999, 479: 64

    23. [23]

      23. Karnicka, K.; Miecznikowski, K.; Kowalewska, B.; Skunik, M.; Opallo, M.; Rogalski, J.; Schuhmann,W.; Kulesza, P. J. Anal. Chem., 2008, 80: 7643

    24. [24]

      24. Liu, Y.;Wang, M. K.; Zhao, F.; Xu, Z. A.; Dong, S. J. Biosensors & Bioelectronics, 2005, 21: 984

    25. [25]

      25. Qiu, H. J.; Xu , C. X.; Huang, X. R.; Ding, Y.; Gao, P. J. J. Phys. Chem. C, 2009, 113: 2521

    26. [26]

      26. Liu, J.; Rinzler, A. G.; Dai, H. J.; Hafner, J. H.; Bradley, R. K.; Boul, P. J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C. B.; Rodriguez-Macias, F.; Shon, Y. S.; Lee, T. R.; Colbert, D. T.; Smalley, R. E. Science, 1998, 280: 1253

    27. [27]

      27. Huang, J.; Zhou, J. Y.; Xiao, H. Y.; Long, S. Y.;Wang, J. T. Acta Chimica Sinica, 2005, 63(14): 1343. [黄俊, 周菊英, 肖海燕, 龙胜亚, 王军涛. 化学学报, 2005, 63(14): 1343]

    28. [28]

      28. Ivanov, I.; Vidakovic-Koch, T.; Sundmacher, K. Energies, 2010, 3: 803


  • 加载中
    1. [1]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

    2. [2]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    3. [3]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    4. [4]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    5. [5]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    6. [6]

      Shiqian WEIXinyu TIANHong LIUMaoxia CHENFan TANGQiang FANWeifeng FANYu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102

    7. [7]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    8. [8]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    9. [9]

      Ke ZhaoZhen LiuLuyao LiuChangyuan YuJingshun PanXuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029

    10. [10]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    11. [11]

      Xingchao ZhaoXiaoming LiMing LiuZijin ZhaoKaixuan YangPengtian LiuHaolan ZhangJintai LiXiaoling MaQi YaoYanming SunFujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021

    12. [12]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    13. [13]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    14. [14]

      Yingxian Wang Tianye Su Limiao Shen Jinping Gao Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015

    15. [15]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    16. [16]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    17. [17]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    18. [18]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    19. [19]

      Runhua ChenQiong WuJingchen LuoXiaolong ZuShan ZhuYongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-0. doi: 10.3866/PKU.WHXB202308052

    20. [20]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

Metrics
  • PDF Downloads(1119)
  • Abstract views(2894)
  • HTML views(25)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return