Citation:
ZENG Han, LIAO Ling-Wen, LI Ming-Fang, TAO Qian, KANG Jing, CHEN Yan-Xia. Poly Aryl Amide and Multiwalled Carbon Nanotube Composite Supported Laccase Electrode and Its Electrochemical Behavior[J]. Acta Physico-Chimica Sinica,
;2010, 26(12): 3217-3224.
doi:
10.3866/PKU.WHXB20101208
-
A novel strategy for the immobilization of laccase onto a glassy carbon electrode with high stability and electrocatalytic performance is presented. Laccase is attached to a matrix of mixed poly aryl amide (PAA) and multiwalled carbon nanotubes (MWCNTs) (denoted Lac/PAA-MWCNTs/GCE) by covalently bonding the surface amine group of laccase to the terminal carboxyl group of PAA and hydrophobic-hydrophobic interaction between MWCNTs and the laccase. The PAA backbone avoids the detachment and denaturing of the laccase, and the intermixed MWCNTs provide high electronic conductivity. The loading of laccase is 56.0 mg·g-1 and more than 68% shows electrochemical activity. The electrode delivers direct electron transfer between the redox center of the laccase and the electrode with two pairs of redox peaks at 0.73 and 0.38 V, which is close to the formal potential of the T1 and T2 Cu-sites (0.78 and 0.39 V (vs NHE)), respectively. The onset potential for O2 reduction reaction (ORR) is ca 0.55 V in a phosphate buffer solution (pH=4.4). The Michaelis constant (KM) of the Lac/PAA-MWCNTs/GEs for O2 is 55.8 μmol·L-1 and the detection limit of oxygen reaches 0.57 μmol·L-1. After 2 months of storage at 4 °C the ORR activity of the Lac/PAA-MWCNTs/GC electrode retains ca 86% of its initial values and the peak potential of the ORR shifts negatively by ca 50 mV. Given the excellent catalytic performance towards ORR and its high stability this strategy will be widely applicable to the development of an enzyme-based cathode for biofuel cells and amperometric biosensors for oxygen.
-
-
-
[1]
1. Xu, F. Biochemistry, 1996, 35: 7608
-
[2]
2. Piontek, K.; Antorini, M.; Choinowski, T. J. Biol. Chem., 2002, 277: 37663
-
[3]
3. Zheng,W.; Li, Q. F.; Yan, Y. M.; Zhang, J.; Mao, L. Q. Electroanalysis, 2006, 18: 587
-
[4]
4. Yarapolov, A. I.; Kharybin, A. N.; Emneus, J.; Marko-Varga, G.; rton, L. Bioelectrochem. Bioenerg., 1996, 40: 49
-
[5]
5. Shleev, S.; Kasmi, A. E.; Ruzgas, T.; rton, L. Electrochem. Commun., 2004, 6: 934
-
[6]
6. Liu, Y.; Qu, X. H.; Guo, H.W.; Chen, H. J.; Liu, B. F.; Dong, S. J. Biosensors & Bioelectronics, 2006, 21: 2195
-
[7]
7. Rahman, M. A.; Noh, H. B.; Shim, Y. B. Anal. Chem., 2008, 80: 8020
-
[8]
8. Tarasevich, M. R.; Bogdanovskaya, V. A.; Kuznetsova, L. N. Russ. J. Phys. Chem., 2001, 37: 969
-
[9]
9. Stolarczyk, K.; Nazaruk, E.; Rogalski, J.; Bileswicz, R. Electrochimica Acta, 2008, 53: 3983
-
[10]
10. Blanford, C. F.; Heath, R. S.; Armstrong, F. A. Chem. Commun., 2007: 1710
-
[11]
11. Blanford, C. F.; Foster, C. E.; Heath, R. E.; Armstrong, F. A. Faraday Discuss., 2008, 140: 319
-
[12]
12. Farneth,W. E.; Diner, B. A.; Gierke, T. D.; D'Amore, M. B. J. Electroanal. Chem., 2005, 581: 190
-
[13]
13. Katz, E.; Sheeney-Haj-Ichia, L.;Willner, I. Angew. Chem. Int. Edit., 2004, 43: 3292
-
[14]
14. Barriere, F.; Ferry, Y.; Rochefort, D.; Leech, D. Electrochem. Commun., 2004, 6: 237
-
[15]
15. Ohara, T. J.; Raja palan, R.; Heller, A. Anal. Chem., 1993, 65: 3512
-
[16]
16. Trudeau, F.; Daigle, F.; Leech, D. Anal. Chem., 1997, 69: 882
-
[17]
17. Ackermann, Y.; Guschin, D. A.; Eckhard, K.; Shleev, S.; Schuhmann, W. Electrochem. Commun., 2010, 12: 640
-
[18]
18. Klis, M.; Karbarz, M.; Stojek, Z.; Rogalski, J.; Bilewicz, R. J. Phys. Chem. B, 2009, 113: 6062
-
[19]
19. Qiu, H. J.; Xu , C. X.; Huang, X. R.; Ding, Y.; Qu Y. B.; Gao, P. J. J. Phys. Chem. C, 2008, 112: 14781
-
[20]
20. Stolarczyk, K.; Nazaruk, E.; Rogalski, J.; Bilewicz, R. Electrochem. Commun., 2007, 9: 115
-
[21]
21. Fei, J. F.; Song, H. Y.; Palmore, G. T. R. Chem. Mater., 2007, 19(7): 1565
-
[22]
22. Katz, E.;Willner, I.; Kotlyar, A. B. J. Electroanal. Chem., 1999, 479: 64
-
[23]
23. Karnicka, K.; Miecznikowski, K.; Kowalewska, B.; Skunik, M.; Opallo, M.; Rogalski, J.; Schuhmann,W.; Kulesza, P. J. Anal. Chem., 2008, 80: 7643
-
[24]
24. Liu, Y.;Wang, M. K.; Zhao, F.; Xu, Z. A.; Dong, S. J. Biosensors & Bioelectronics, 2005, 21: 984
-
[25]
25. Qiu, H. J.; Xu , C. X.; Huang, X. R.; Ding, Y.; Gao, P. J. J. Phys. Chem. C, 2009, 113: 2521
-
[26]
26. Liu, J.; Rinzler, A. G.; Dai, H. J.; Hafner, J. H.; Bradley, R. K.; Boul, P. J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C. B.; Rodriguez-Macias, F.; Shon, Y. S.; Lee, T. R.; Colbert, D. T.; Smalley, R. E. Science, 1998, 280: 1253
-
[27]
27. Huang, J.; Zhou, J. Y.; Xiao, H. Y.; Long, S. Y.;Wang, J. T. Acta Chimica Sinica, 2005, 63(14): 1343. [黄俊, 周菊英, 肖海燕, 龙胜亚, 王军涛. 化学学报, 2005, 63(14): 1343]
-
[28]
28. Ivanov, I.; Vidakovic-Koch, T.; Sundmacher, K. Energies, 2010, 3: 803
-
[1]
-
-
-
[1]
Yang Meiqing , Lu Wang , Haozi Lu , Yaocheng Yang , Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046
-
[2]
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
-
[3]
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
-
[4]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[5]
Zhaoyu Wen , Na Han , Yanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001
-
[6]
Shiqian WEI , Xinyu TIAN , Hong LIU , Maoxia CHEN , Fan TANG , Qiang FAN , Weifeng FAN , Yu HU . Oxygen reduction reaction/oxygen evolution reaction catalytic performances of different active sites on nitrogen-doped graphene loaded with iron single atoms. Chinese Journal of Inorganic Chemistry, 2025, 41(9): 1776-1788. doi: 10.11862/CJIC.20250102
-
[7]
Xichen YAO , Shuxian WANG , Yun WANG , Cheng WANG , Chuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384
-
[8]
Xinlong XU , Chunxue JING , Yuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046
-
[9]
Ke Zhao , Zhen Liu , Luyao Liu , Changyuan Yu , Jingshun Pan , Xuguang Huang . Functionalized Reflective Structure Fiber-Optic Interferometric Sensor for Trace Detection of Lead Ions. Acta Physico-Chimica Sinica, 2024, 40(4): 2304029-0. doi: 10.3866/PKU.WHXB202304029
-
[10]
Yihui Song , Shangshang Qin , Kai Wu , Chengyun Jin , Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018
-
[11]
Xingchao Zhao , Xiaoming Li , Ming Liu , Zijin Zhao , Kaixuan Yang , Pengtian Liu , Haolan Zhang , Jintai Li , Xiaoling Ma , Qi Yao , Yanming Sun , Fujun Zhang . Photomultiplication-Type All-Polymer Photodetectors and Their Applications in Photoplethysmography Sensor. Acta Physico-Chimica Sinica, 2025, 41(1): 100007-0. doi: 10.3866/PKU.WHXB202311021
-
[12]
Xueting Feng , Ziang Shang , Rong Qin , Yunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005
-
[13]
Yang WANG , Xiaoqin ZHENG , Yang LIU , Kai ZHANG , Jiahui KOU , Linbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165
-
[14]
Yingxian Wang , Tianye Su , Limiao Shen , Jinping Gao , Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015
-
[15]
Yinjie Xu , Suiqin Li , Lihao Liu , Jiahui He , Kai Li , Mengxin Wang , Shuying Zhao , Chun Li , Zhengbin Zhang , Xing Zhong , Jianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012
-
[16]
Hailang JIA , Pengcheng JI , Hongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398
-
[17]
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
-
[18]
Fangfang WANG , Jiaqi CHEN , Weiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350
-
[19]
Runhua Chen , Qiong Wu , Jingchen Luo , Xiaolong Zu , Shan Zhu , Yongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-0. doi: 10.3866/PKU.WHXB202308052
-
[20]
Qiang Zhang , Yuanbiao Huang , Rong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040
-
[1]
Metrics
- PDF Downloads(1119)
- Abstract views(2894)
- HTML views(25)