Citation: ZENG Han, LIAO Ling-Wen, LI Ming-Fang, TAO Qian, KANG Jing, CHEN Yan-Xia. Poly Aryl Amide and Multiwalled Carbon Nanotube Composite Supported Laccase Electrode and Its Electrochemical Behavior[J]. Acta Physico-Chimica Sinica, ;2010, 26(12): 3217-3224. doi: 10.3866/PKU.WHXB20101208
-
A novel strategy for the immobilization of laccase onto a glassy carbon electrode with high stability and electrocatalytic performance is presented. Laccase is attached to a matrix of mixed poly aryl amide (PAA) and multiwalled carbon nanotubes (MWCNTs) (denoted Lac/PAA-MWCNTs/GCE) by covalently bonding the surface amine group of laccase to the terminal carboxyl group of PAA and hydrophobic-hydrophobic interaction between MWCNTs and the laccase. The PAA backbone avoids the detachment and denaturing of the laccase, and the intermixed MWCNTs provide high electronic conductivity. The loading of laccase is 56.0 mg·g-1 and more than 68% shows electrochemical activity. The electrode delivers direct electron transfer between the redox center of the laccase and the electrode with two pairs of redox peaks at 0.73 and 0.38 V, which is close to the formal potential of the T1 and T2 Cu-sites (0.78 and 0.39 V (vs NHE)), respectively. The onset potential for O2 reduction reaction (ORR) is ca 0.55 V in a phosphate buffer solution (pH=4.4). The Michaelis constant (KM) of the Lac/PAA-MWCNTs/GEs for O2 is 55.8 μmol·L-1 and the detection limit of oxygen reaches 0.57 μmol·L-1. After 2 months of storage at 4 °C the ORR activity of the Lac/PAA-MWCNTs/GC electrode retains ca 86% of its initial values and the peak potential of the ORR shifts negatively by ca 50 mV. Given the excellent catalytic performance towards ORR and its high stability this strategy will be widely applicable to the development of an enzyme-based cathode for biofuel cells and amperometric biosensors for oxygen.
-
-
[1]
1. Xu, F. Biochemistry, 1996, 35: 7608
-
[2]
2. Piontek, K.; Antorini, M.; Choinowski, T. J. Biol. Chem., 2002, 277: 37663
-
[3]
3. Zheng,W.; Li, Q. F.; Yan, Y. M.; Zhang, J.; Mao, L. Q. Electroanalysis, 2006, 18: 587
-
[4]
4. Yarapolov, A. I.; Kharybin, A. N.; Emneus, J.; Marko-Varga, G.; rton, L. Bioelectrochem. Bioenerg., 1996, 40: 49
-
[5]
5. Shleev, S.; Kasmi, A. E.; Ruzgas, T.; rton, L. Electrochem. Commun., 2004, 6: 934
-
[6]
6. Liu, Y.; Qu, X. H.; Guo, H.W.; Chen, H. J.; Liu, B. F.; Dong, S. J. Biosensors & Bioelectronics, 2006, 21: 2195
-
[7]
7. Rahman, M. A.; Noh, H. B.; Shim, Y. B. Anal. Chem., 2008, 80: 8020
-
[8]
8. Tarasevich, M. R.; Bogdanovskaya, V. A.; Kuznetsova, L. N. Russ. J. Phys. Chem., 2001, 37: 969
-
[9]
9. Stolarczyk, K.; Nazaruk, E.; Rogalski, J.; Bileswicz, R. Electrochimica Acta, 2008, 53: 3983
-
[10]
10. Blanford, C. F.; Heath, R. S.; Armstrong, F. A. Chem. Commun., 2007: 1710
-
[11]
11. Blanford, C. F.; Foster, C. E.; Heath, R. E.; Armstrong, F. A. Faraday Discuss., 2008, 140: 319
-
[12]
12. Farneth,W. E.; Diner, B. A.; Gierke, T. D.; D'Amore, M. B. J. Electroanal. Chem., 2005, 581: 190
-
[13]
13. Katz, E.; Sheeney-Haj-Ichia, L.;Willner, I. Angew. Chem. Int. Edit., 2004, 43: 3292
-
[14]
14. Barriere, F.; Ferry, Y.; Rochefort, D.; Leech, D. Electrochem. Commun., 2004, 6: 237
-
[15]
15. Ohara, T. J.; Raja palan, R.; Heller, A. Anal. Chem., 1993, 65: 3512
-
[16]
16. Trudeau, F.; Daigle, F.; Leech, D. Anal. Chem., 1997, 69: 882
-
[17]
17. Ackermann, Y.; Guschin, D. A.; Eckhard, K.; Shleev, S.; Schuhmann, W. Electrochem. Commun., 2010, 12: 640
-
[18]
18. Klis, M.; Karbarz, M.; Stojek, Z.; Rogalski, J.; Bilewicz, R. J. Phys. Chem. B, 2009, 113: 6062
-
[19]
19. Qiu, H. J.; Xu , C. X.; Huang, X. R.; Ding, Y.; Qu Y. B.; Gao, P. J. J. Phys. Chem. C, 2008, 112: 14781
-
[20]
20. Stolarczyk, K.; Nazaruk, E.; Rogalski, J.; Bilewicz, R. Electrochem. Commun., 2007, 9: 115
-
[21]
21. Fei, J. F.; Song, H. Y.; Palmore, G. T. R. Chem. Mater., 2007, 19(7): 1565
-
[22]
22. Katz, E.;Willner, I.; Kotlyar, A. B. J. Electroanal. Chem., 1999, 479: 64
-
[23]
23. Karnicka, K.; Miecznikowski, K.; Kowalewska, B.; Skunik, M.; Opallo, M.; Rogalski, J.; Schuhmann,W.; Kulesza, P. J. Anal. Chem., 2008, 80: 7643
-
[24]
24. Liu, Y.;Wang, M. K.; Zhao, F.; Xu, Z. A.; Dong, S. J. Biosensors & Bioelectronics, 2005, 21: 984
-
[25]
25. Qiu, H. J.; Xu , C. X.; Huang, X. R.; Ding, Y.; Gao, P. J. J. Phys. Chem. C, 2009, 113: 2521
-
[26]
26. Liu, J.; Rinzler, A. G.; Dai, H. J.; Hafner, J. H.; Bradley, R. K.; Boul, P. J.; Lu, A.; Iverson, T.; Shelimov, K.; Huffman, C. B.; Rodriguez-Macias, F.; Shon, Y. S.; Lee, T. R.; Colbert, D. T.; Smalley, R. E. Science, 1998, 280: 1253
-
[27]
27. Huang, J.; Zhou, J. Y.; Xiao, H. Y.; Long, S. Y.;Wang, J. T. Acta Chimica Sinica, 2005, 63(14): 1343. [黄俊, 周菊英, 肖海燕, 龙胜亚, 王军涛. 化学学报, 2005, 63(14): 1343]
-
[28]
28. Ivanov, I.; Vidakovic-Koch, T.; Sundmacher, K. Energies, 2010, 3: 803
-
[1]
-
-
[1]
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
-
[2]
Yonghui ZHOU , Rujun HUANG , Dongchao YAO , Aiwei ZHANG , Yuhang SUN , Zhujun CHEN , Baisong ZHU , Youxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373
-
[3]
Jiarong Feng , Yejie Duan , Chu Chu , Dezhen Xie , Qiu'e Cao , Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016
-
[4]
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
-
[5]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[6]
Jinyi Sun , Lin Ma , Yanjie Xi , Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094
-
[7]
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
-
[8]
Xiaofeng Zhu , Bingbing Xiao , Jiaxin Su , Shuai Wang , Qingran Zhang , Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005
-
[9]
Yingxian Wang , Tianye Su , Limiao Shen , Jinping Gao , Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015
-
[10]
Yurong Tang , Yunren Shi , Yi Xu , Bo Qin , Yanqin Xu , Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087
-
[11]
Lu XU , Chengyu ZHANG , Wenjuan JI , Haiying YANG , Yunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431
-
[12]
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
-
[13]
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
-
[14]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[15]
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
-
[16]
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021
-
[17]
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
-
[18]
Xiaowei TANG , Shiquan XIAO , Jingwen SUN , Yu ZHU , Xiaoting CHEN , Haiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173
-
[19]
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
-
[20]
Zhibei Qu , Changxin Wang , Lei Li , Jiaze Li , Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039
-
[1]
Metrics
- PDF Downloads(1119)
- Abstract views(2721)
- HTML views(20)