Citation: LI Huan-Zhi, TANG Ya-Wen, LU Tian-Hong. Effect of NH4+ on the Electrocatalytic Performance of Carbon Supported Pd Catalyst for Formic Acid Oxidation[J]. Acta Physico-Chimica Sinica, ;2010, 26(12): 3199-3202. doi: 10.3866/PKU.WHXB20101206 shu

Effect of NH4+ on the Electrocatalytic Performance of Carbon Supported Pd Catalyst for Formic Acid Oxidation

  • Received Date: 16 August 2010
    Available Online: 26 October 2010

    Fund Project: 国家自然科学基金(20873065, 21073094)资助项目 (20873065, 21073094)

  • We investigated the effect of HClO4, NH4ClO4, and NaClO4 electrolytes on the electrocatalytic performance of a Pd/C catalyst electrode for formic acid oxidation. The Pd/C catalyst was characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). The performance of the Pd/C catalyst electrode during formic acid oxidation in different electrolytes was measured using electrochemical methods. We found that the electrocatalytic activity and stability of the Pd/C catalyst electrode for formic acid oxidation decreased in the following order: NH4ClO4 > NaClO4 > HClO4. The difference in pH between the different electrolytes was small because of the presence of formic acid. Therefore, the electrolyte pH has a small effect and the cations have a large effect. The better performance of the NaClO4 electrolyte compared to the HClO4 electrolyte is due to a pH effect. The better performance of the NH4ClO4 electrolyte compared to the NaClO4 electrolyte is due to NH4+ decreasing the adsorption strength and amount of CO on the Pd/C catalyst. This finding has large significance for the increase in the performance of the direct formic acid fuel cell (DFAFC).

  • 加载中
    1. [1]

      1. Rhee, Y.; Ha, S.; Masel, R. I. J. Power Sources, 2003, 117: 35

    2. [2]

      2. Lu, T. H.; Tang, Y.W.; Zhang, L. L.; Gao, Y. Batt. Ind., 2007, 12: 412 [陆天虹, 唐亚文, 张玲玲, 高颖. 电池工业, 2007, 12: 412]

    3. [3]

      3. Ha, S.; Larsen, R.; Masel, R. I.;Waszczuk, P.;Wieckowski, A.; Barnard, T. J. Power Sources, 2002, 111: 83

    4. [4]

      4. Li, X. G.; Hsing, I. M.Electrochim. Acta, 2006, 51: 3477

    5. [5]

      5. Yu, X.W.; Pickup, P. G. J. Power Sources, 2009, 187: 493

    6. [6]

      6. Wang, X.; Hu, J. M.; Hsing, I. M. J. Electroanal. Chem., 2004, 562: 73

    7. [7]

      7. Ha, S.; Larsen, R.; Masel, R. I. J. Power Sources, 2005, 144: 28

    8. [8]

      8. Ha, S.; Larsen, R.; Zhu, Y. Fuel Cells, 2004, 4: 337

    9. [9]

      9. Wang, X.; Tang, Y.W.; Lu, T. H. Electrochemistry, 2008, 14: 6 [王新, 唐亚文, 陆天虹. 电化学, 2008, 14: 6]

    10. [10]

      10. Jiang, J. H.; Kucernak, A. Electrochim. Acta, 2009, 54: 4545

    11. [11]

      11. Chen, C. H.; Liou,W. J.; Lin, H. M.;Wu, S. H.; Mikolajczuk, A.; Stobinski, L.; Borodzinski, A.; Kedzierzawski, P.; Kurzydlowski, K. Phys. Status Solid A, 2010, 207: 1160

    12. [12]

      12. Wang, X. M.; Xia, Y. Y. Electrochem. Commun., 2008, 10: 1644

    13. [13]

      13. Matol?nova, I.; Fabk, S.; Masek, K. Vacuum, 2003, 71: 41

    14. [14]

      14. Wang, X.; Tang, Y.W.; Gao, Y.; Lu, T. H. J. Power Sources,2008, 175: 784

    15. [15]

      15. Yu, X.W.; Pickup, P. G. J. Power Sources, 2009, 192: 279

    16. [16]

      16. Yu, X.W.; Pickup, P. G. Electrochem. Commun., 2010, 12: 800

    17. [17]

      17. Cao, S.;Wang, Y. E.; Lu, T. H.; Tang, Y.W. Chin. J. Appl. Chem., 2009, 26: 613. [曹爽, 王彦恩, 陆天虹, 唐亚文. 应用化学, 2009, 26: 613]

    18. [18]

      18. Zhang, L. L.; Tang, Y.W.; Bao, J. C.; Lu, T. H.; Li, C. J. Power Sources, 2006, 162: 177

    19. [19]

      19. Yang, G. X.; Chen, Y.; Zhou, Y. M.; Tang, Y.W.; Lu, T. H. Electrochem. Commun., 2010, 12: 492

    20. [20]

      20. Wang, J. Y.; Kang, Y. Y.; Yang, H.; Cai,W. B. J. Phys. Chem. C, 2009, 113: 8366

    21. [21]

      21. Yang, G. X.; Deng, L. J.; Tang, Y.W.; Lu, T. H. Chem. J. Chin. Univ., 2009, 30: 1173. [杨改秀, 邓玲娟, 唐亚文, 陆天虹. 高等学校化学学报, 2009, 30: 1173]

    22. [22]

      22. Yang, G. X.; Chen, T. T.; Tang, Y.W.; Lu, T. H. Acta Phys. -Chim. Sin., 2009, 25: 2450. [杨改秀, 陈婷婷, 唐亚文, 陆天虹. 物理化学学报, 2009, 25: 2450]

    23. [23]

      23. Haan, J. L.; Masel, R. I. Electrochim. Acta, 2009, 54: 4073

    24. [24]

      24. Liao, C.;Wei, Z. D.; Chen, S. G.; Li, L.; Ji, M. B.; Tan, Y.; Liao, M. J. J. Phys. Chem. C, 2009, 113: 5705

    25. [25]

      25. Hoshi, N.; Kuroda, M.; Ogawa, T.; Koga, O.; Hori, Y. Langmuir,2004, 20: 5066

    26. [26]

      26. Feliu, J. M.; Herrero, E.//Vielstich,W.; Gasteiger, H. A.; Lamm, A. Handbook of fuel cells. New York:Wiley, 2003: 679


  • 加载中
    1. [1]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    2. [2]

      Rui YangHui LiQingfei MengWenjie LiJiliang WuYongjin FangChi HuangYuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053

    3. [3]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    4. [4]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    5. [5]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    6. [6]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    7. [7]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    8. [8]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    9. [9]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    10. [10]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    11. [11]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    12. [12]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    13. [13]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    14. [14]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    15. [15]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    16. [16]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    17. [17]

      Jinrong Bao Jinglin Zhang Wenxian Li Xiaowei Zhu . 苯甲酸稀土配合物的制备及性能表征——基于应用化学专业人才培养的综合化学实验案例分析. University Chemistry, 2025, 40(8): 218-224. doi: 10.12461/PKU.DXHX202409142

    18. [18]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    19. [19]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    20. [20]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

Metrics
  • PDF Downloads(1071)
  • Abstract views(2616)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return