Citation: LI Huan-Zhi, TANG Ya-Wen, LU Tian-Hong. Effect of NH4+ on the Electrocatalytic Performance of Carbon Supported Pd Catalyst for Formic Acid Oxidation[J]. Acta Physico-Chimica Sinica, ;2010, 26(12): 3199-3202. doi: 10.3866/PKU.WHXB20101206
-
We investigated the effect of HClO4, NH4ClO4, and NaClO4 electrolytes on the electrocatalytic performance of a Pd/C catalyst electrode for formic acid oxidation. The Pd/C catalyst was characterized by X-ray diffraction (XRD), energy dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). The performance of the Pd/C catalyst electrode during formic acid oxidation in different electrolytes was measured using electrochemical methods. We found that the electrocatalytic activity and stability of the Pd/C catalyst electrode for formic acid oxidation decreased in the following order: NH4ClO4 > NaClO4 > HClO4. The difference in pH between the different electrolytes was small because of the presence of formic acid. Therefore, the electrolyte pH has a small effect and the cations have a large effect. The better performance of the NaClO4 electrolyte compared to the HClO4 electrolyte is due to a pH effect. The better performance of the NH4ClO4 electrolyte compared to the NaClO4 electrolyte is due to NH4+ decreasing the adsorption strength and amount of CO on the Pd/C catalyst. This finding has large significance for the increase in the performance of the direct formic acid fuel cell (DFAFC).
-
Keywords:
-
Formic acid
, - Electrolyte,
- Palladium,
- Direct formic acid fuel cell
-
-
-
[1]
1. Rhee, Y.; Ha, S.; Masel, R. I. J. Power Sources, 2003, 117: 35
-
[2]
2. Lu, T. H.; Tang, Y.W.; Zhang, L. L.; Gao, Y. Batt. Ind., 2007, 12: 412 [陆天虹, 唐亚文, 张玲玲, 高颖. 电池工业, 2007, 12: 412]
-
[3]
3. Ha, S.; Larsen, R.; Masel, R. I.;Waszczuk, P.;Wieckowski, A.; Barnard, T. J. Power Sources, 2002, 111: 83
-
[4]
4. Li, X. G.; Hsing, I. M.Electrochim. Acta, 2006, 51: 3477
-
[5]
5. Yu, X.W.; Pickup, P. G. J. Power Sources, 2009, 187: 493
-
[6]
6. Wang, X.; Hu, J. M.; Hsing, I. M. J. Electroanal. Chem., 2004, 562: 73
-
[7]
7. Ha, S.; Larsen, R.; Masel, R. I. J. Power Sources, 2005, 144: 28
-
[8]
8. Ha, S.; Larsen, R.; Zhu, Y. Fuel Cells, 2004, 4: 337
-
[9]
9. Wang, X.; Tang, Y.W.; Lu, T. H. Electrochemistry, 2008, 14: 6 [王新, 唐亚文, 陆天虹. 电化学, 2008, 14: 6]
-
[10]
10. Jiang, J. H.; Kucernak, A. Electrochim. Acta, 2009, 54: 4545
-
[11]
11. Chen, C. H.; Liou,W. J.; Lin, H. M.;Wu, S. H.; Mikolajczuk, A.; Stobinski, L.; Borodzinski, A.; Kedzierzawski, P.; Kurzydlowski, K. Phys. Status Solid A, 2010, 207: 1160
-
[12]
12. Wang, X. M.; Xia, Y. Y. Electrochem. Commun., 2008, 10: 1644
-
[13]
13. Matol?nova, I.; Fabk, S.; Masek, K. Vacuum, 2003, 71: 41
-
[14]
14. Wang, X.; Tang, Y.W.; Gao, Y.; Lu, T. H. J. Power Sources,2008, 175: 784
-
[15]
15. Yu, X.W.; Pickup, P. G. J. Power Sources, 2009, 192: 279
-
[16]
16. Yu, X.W.; Pickup, P. G. Electrochem. Commun., 2010, 12: 800
-
[17]
17. Cao, S.;Wang, Y. E.; Lu, T. H.; Tang, Y.W. Chin. J. Appl. Chem., 2009, 26: 613. [曹爽, 王彦恩, 陆天虹, 唐亚文. 应用化学, 2009, 26: 613]
-
[18]
18. Zhang, L. L.; Tang, Y.W.; Bao, J. C.; Lu, T. H.; Li, C. J. Power Sources, 2006, 162: 177
-
[19]
19. Yang, G. X.; Chen, Y.; Zhou, Y. M.; Tang, Y.W.; Lu, T. H. Electrochem. Commun., 2010, 12: 492
-
[20]
20. Wang, J. Y.; Kang, Y. Y.; Yang, H.; Cai,W. B. J. Phys. Chem. C, 2009, 113: 8366
-
[21]
21. Yang, G. X.; Deng, L. J.; Tang, Y.W.; Lu, T. H. Chem. J. Chin. Univ., 2009, 30: 1173. [杨改秀, 邓玲娟, 唐亚文, 陆天虹. 高等学校化学学报, 2009, 30: 1173]
-
[22]
22. Yang, G. X.; Chen, T. T.; Tang, Y.W.; Lu, T. H. Acta Phys. -Chim. Sin., 2009, 25: 2450. [杨改秀, 陈婷婷, 唐亚文, 陆天虹. 物理化学学报, 2009, 25: 2450]
-
[23]
23. Haan, J. L.; Masel, R. I. Electrochim. Acta, 2009, 54: 4073
-
[24]
24. Liao, C.;Wei, Z. D.; Chen, S. G.; Li, L.; Ji, M. B.; Tan, Y.; Liao, M. J. J. Phys. Chem. C, 2009, 113: 5705
-
[25]
25. Hoshi, N.; Kuroda, M.; Ogawa, T.; Koga, O.; Hori, Y. Langmuir,2004, 20: 5066
-
[26]
26. Feliu, J. M.; Herrero, E.//Vielstich,W.; Gasteiger, H. A.; Lamm, A. Handbook of fuel cells. New York:Wiley, 2003: 679
-
[1]
-
-
[1]
Feiya Cao , Qixin Wang , Pu Li , Zhirong Xing , Ziyu Song , Heng Zhang , Zhibin Zhou , Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094
-
[2]
Ling Liu , Haibin Wang , Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080
-
[3]
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
-
[4]
Weihan Zhang , Menglu Wang , Ankang Jia , Wei Deng , Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043
-
[5]
Renxiao Liang , Zhe Zhong , Zhangling Jin , Lijuan Shi , Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024
-
[6]
Tao Jiang , Yuting Wang , Lüjin Gao , Yi Zou , Bowen Zhu , Li Chen , Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057
-
[7]
Yutong Dong , Huiling Xu , Yucheng Zhao , Zexin Zhang , Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022
-
[8]
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065
-
[9]
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
-
[10]
Yongmei Liu , Lisen Sun , Zhen Huang , Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020
-
[11]
Yanhui Zhong , Ran Wang , Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017
-
[12]
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
-
[13]
Shuang Yang , Qun Wang , Caiqin Miao , Ziqi Geng , Xinran Li , Yang Li , Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044
-
[14]
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
-
[15]
Qiangqiang SUN , Pengcheng ZHAO , Ruoyu WU , Baoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454
-
[16]
Yujia LI , Tianyu WANG , Fuxue WANG , Chongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314
-
[17]
Wenqi Gao , Xiaoyan Fan , Feixiang Wang , Zhuojun Fu , Jing Zhang , Enlai Hu , Peijun Gong . Exploring Nernst Equation Factors and Applications of Solid Zinc-Air Battery. University Chemistry, 2024, 39(5): 98-107. doi: 10.3866/PKU.DXHX202310026
-
[18]
Xuanzhu Huo , Yixi Liu , Qiyu Wu , Zhiqiang Dong , Chanzi Ruan , Yanping Ren . Integrated Experiment of “Electrolytic Preparation of Cu2O and Gasometric Determination of Avogadro’s Constant: Implementation, Results, and Discussion: A Micro-Experiment Recommended for Freshmen in Higher Education at Various Levels Across the Nation. University Chemistry, 2024, 39(3): 302-307. doi: 10.3866/PKU.DXHX202308095
-
[19]
Doudou Qin , Junyang Ding , Chu Liang , Qian Liu , Ligang Feng , Yang Luo , Guangzhi Hu , Jun Luo , Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034
-
[20]
Yong Zhou , Jia Guo , Yun Xiong , Luying He , Hui Li . Comprehensive Teaching Experiment on Electrochemical Corrosion in Galvanic Cell for Chemical Safety and Environmental Protection Course. University Chemistry, 2024, 39(7): 330-336. doi: 10.3866/PKU.DXHX202310109
-
[1]
Metrics
- PDF Downloads(1071)
- Abstract views(2478)
- HTML views(2)