Citation: HOU Ling-Yun, YANG Jin, MA Xue-Song, LIU Wei. Effects of Species in Vitiation Air on Methane-Fueled Supersonic Combustion[J]. Acta Physico-Chimica Sinica, ;2010, 26(12): 3150-3156. doi: 10.3866/PKU.WHXB20101204 shu

Effects of Species in Vitiation Air on Methane-Fueled Supersonic Combustion

  • Received Date: 10 May 2010
    Available Online: 26 October 2010

    Fund Project: 国家自然科学基金(50306011)资助项目 (50306011)

  • Based on a detailed chemical reaction mechanism, a reduced reaction mechanism with 18 species and 24 steps was used to simulate the supersonic combustion of methane. Heated air calculations showed that seven main vitiated species, i.e., H2O, CO2, O, OH, CO, H, and H2, were present in ethanolfueled heated air. We analyzed the effects of these species on methane-fueled supersonic combustion using chemical kinetics and thermodynamics. H2O inhibits the combustion process, decreases the combustion efficiency, and decreases the specific thrust. The relatively large molecular weight of CO2 contributes to an increase in the mean molecular weight of the fuel gas, which is a negative factor in the mechanism of specific thrust. Free radicals O, OH, H can effectively promote the combustion process and thus increase the combustion efficiency. Intermediate products CO and H2 increase the combustion efficiency, and this is a function of the additional fuel.

  • 加载中
    1. [1]

      1. Edelman, R. B.; Spadaccini, L. J. J. Spacecraft, 1969, 6(12): 1442

    2. [2]

      2. Mattick, S. J.; Frankel, S. H. Numerical modeling of supersonic combustion_ validation and vitiation studies using FLUENT// 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Tucson, Arizona, 2005: 10-13

    3. [3]

      3. Tomioka, S.; Hiraiwa, T.; Kobayashi, K.; Izumikawa, M.; Kishida, T.; Yamasaki H. J. Propulsion Power, 2007, 23(4): 789

    4. [4]

      4. Li,W. Q.; Song,W.Y. Journal of Air Force Engineering University, 2006, 5(7):10. [李卫强, 宋文艳. 空军工程大学学报, 2006, 5(7): 10]

    5. [5]

      5. Liu,W. X.; He,W.; Li, H. B.; Li, X. Y.; Le, J. L. Chinese Science Bulletin, 2009, 54(8): 1317. [刘伟雄, 贺伟, 李宏斌, 李象远, 乐嘉陵. 科学通报, 2008, 53(8): 2257]

    6. [6]

      6. Shao, J. X.; Tan, N. X.; Liu,W. X.; Li, X. Y. Acta Phys. -Chim. Sin., 2010, 26(2): 270. [邵菊香, 谈宁馨, 刘伟雄, 李象远. 物理化学学报, 2010, 26(2): 270]

    7. [7]

      7. Liu, O. Z.; Cai, Y. H.; Hu, Y. L.; Liu, J. H.; Ling,W. H. Journal of Propulsion Technology, 2004, 25(5): 463. [刘欧子, 蔡元虎, 胡欲立, 刘敬华, 凌文辉. 推进技术, 2004, 25(5): 463]

    8. [8]

      8. Peters, N.; Kee, R. J. Combust. Flame, 1987, 68: 17

    9. [9]

      9. Tong, G.; Huang, Y.; Chen, Y. L. Journal of Fuel Chemistry and Technology, 2000, 28(1): 49. [董刚, 黄鹰, 陈义良. 燃料化学学报, 2000, 28(1): 49]

    10. [10]

      10. Bowman, C. T.; Hanson, R. K.; Davidson, D. F.; Gardiner Jr.,W. C.; Lissianski, V.; Smith, G. P.; lden, D. M.; Frenklach, M.; ldenberg, M. 1994, http://www.me.berkeley.edu/gri_mech/

    11. [11]

      11. Marinov, N. M. Int. J. Chem. Kinet., 1999, 31(3):183

    12. [12]

      12. Davidenko, D. M.; Gökalp, I.; Dufour, E.; Magre, P. Systematic numerical study of the supersonic combustion in an experimental combustion chamber. 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference, AIAA 2006-7913


  • 加载中
    1. [1]

      Zhen Yao Bing Lin Youping Tian Tao Li Wenhui Zhang Xiongwei Liu Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033

    2. [2]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    3. [3]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    4. [4]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    5. [5]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    6. [6]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    7. [7]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    8. [8]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    9. [9]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    10. [10]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    11. [11]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    12. [12]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    13. [13]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    14. [14]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    15. [15]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

    16. [16]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    17. [17]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    18. [18]

      Ling Fan Meili Pang Yeyun Zhang Yanmei Wang Zhenfeng Shang . Quantum Chemistry Calculation Research on the Diels-Alder Reaction of Anthracene and Maleic Anhydride: Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 133-139. doi: 10.3866/PKU.DXHX202309024

    19. [19]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

    20. [20]

      Shuyong Zhang Yaxian Zhu Wenqing Zhang Yuzhi Wang Jing Lu . Ideological and Political Design of Combustion Heat Measurement Experiment: Determination of Heat Value of Agricultural and Forestry Wastes. University Chemistry, 2024, 39(2): 1-6. doi: 10.3866/PKU.DXHX202303026

Metrics
  • PDF Downloads(1249)
  • Abstract views(3065)
  • HTML views(10)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return