Citation: QI Zheng-Jian, WEI Bin, WANG Xue-Mei, KANG Feng, HONG Man-Xin, TANG Lan-Lan, SUN Yue-Ming. Synthesis, Optical and Electrochemical Properties of Novel 3,4-Dialkyloxythiophene-Based D-A-D Organic Conjugated Molecules[J]. Acta Physico-Chimica Sinica, ;2010, 26(12): 3310-3316. doi: 10.3866/PKU.WHXB20101201 shu

Synthesis, Optical and Electrochemical Properties of Novel 3,4-Dialkyloxythiophene-Based D-A-D Organic Conjugated Molecules

  • Received Date: 15 July 2010
    Available Online: 22 October 2010

    Fund Project: 国家自然科学基金(21075015) (21075015)江苏省科技支撑项目(BE 2009150)资助 (BE 2009150)

  • Novel 3,4-dialkyloxythiophene-based D-A-D organic conjugated molecules di(2-vinyl-3,4- dialkyloxythiophene)-p-2,5-bisphenyl-1,3,4-oxadiazole [(3,4DAOTV)2-OXD] were obtained using the Wittig reaction. The structure was effectively characterized using hydrogen nuclear magnetic resonance (1H NMR), Fourier transform infrared (FTIR) spectroscopy, high pressure liquid chromatography (HPLC) and elemental analysis (EA). The optical and electrochemical properties were studied by UV-Vis, fluorescence spectroscopy, and cyclic voltammetry. The UV-Vis maximum absorption of the three studied compounds ranged between 382-383 nm and their optical bandgaps ranged from 2.92 to 2.97 eV. Their emission maxima ranged from 448 to 452 nm with a bright cyan light and their luminescence quantum yields ranged from 36.8%-37.6% in CHCl3. As solid films, these compounds emit glaucous light at 513-516 nm. The (3, 4DAOTV)2-OXDs show oxidation and reduction processes in their cyclic voltammograms. Their ionization potentials of 5.65-5.70 eV coincide with the hole transport ability of thiophenes and their electron affinity values of 2.74-2.88 eV are close to the required properties of an electron transport material. These properties will facilitate electron injection and transfer from the cathode. Theoretical calculations indicate that the D-A-D organic conjugation molecule has high coplanarity and that electrons are delocalized along its backbone, which might result in interfacial molecular self-assembly and efficient charge carrier transport as well as efficient quantum yields of devices.

  • 加载中
    1. [1]

      1. McCullough, R. D.; Jayaraman, M. J. Chem. Soc. Chem. Commun., 1995: 135

    2. [2]

      2. Inganas, O. Trends Polym. Sci., 1994, 2: 189

    3. [3]

      3. Van Dort, P. C.; Pickett, J. E.; Blohm, M. L. Synth. Met., 1991, 42: 2305

    4. [4]

      4. Fayd, K.; Cloutier, R.; Leclerc, M. Macromolecules, 1993, 26: 2501

    5. [5]

      5. Chen, S. A.; Tsai, C. C. Macromolecules, 1993, 26: 2234

    6. [6]

      6. Ding, J. F.; Day, M.; Robertson, G. Macromolecules, 2002, 35: 3474

    7. [7]

      7. Loewe, R. S.; Khersonsky, S. M.; McCullough, R. D. Adv. Mater, 1999, 11: 250

    8. [8]

      8. Iovu, M. C.; Sheina, E. E.; Gil, R. R.; McCullough, R. D. Macromolecules, 2005, 38: 8649

    9. [9]

      9. Yin, S. G. Adv. Func. Mater., 2009, 19: 894

    10. [10]

      10. Yu,W. L.; Meng, H.; Pei, J. Macromolecules, 1998, 31: 4838

    11. [11]

      11. Adachi, C.; Baldo, M. A.; Forrest, S. R. Appl. Phys. Let, 2000, 77: 904

    12. [12]

      12. Mikroyannidis, J. A.; Spiliopoulos, L. K.; Kasimis, T. S. Macromolecules, 2003, 36: 9295

    13. [13]

      13. Kim, J. H.; Park, J. H.; Lee, H. Chem. Mater., 2003, 15: 3414

    14. [14]

      14. Wan, J. H.; Feng, J. C.;Wen, G. A.;Wei,W.; Huang,W. J. Org. Chem., 2006, 71: 2565

    15. [15]

      15. Guo, K. P.; Hao, J. M.; Zhang, T.; Zu, F. H. Dyes and Pigments, 2008, 77: 657

    16. [16]

      16. Qi, Z. J.; He, Y. F.; Sun, Y. M. Chinese Journal of Organic Chemistry, 2009, 29: 1756

    17. [17]

      [祁争健, 何艳芳, 孙岳明. 有机化 学, 2009, 29: 1756]

    18. [18]

      17. Li, D. J.; Sun, B. H.; Li, B. University Chemistry, 2003, 18: 59

    19. [19]

      [李德江, 孙碧海, 李斌. 大学化学, 2003, 18 : 59]

    20. [20]

      18. Koeckelberghs, G.; Vangheluwe, M.; Samyn, C. Macromolecules, 2005, 38: 5554

    21. [21]

      19. Akoudad, S.; Frere, P.; Mercier, N.; Roncali, J. J. Org. Chem., 1999, 64: 4267

    22. [22]

      20. Song, J. F.; Cheng, Y. X.; Chen, L.W. European Polymer Journal, 2006, 42: 663

    23. [23]

      21. Zhu, Y.; Kulkarni, A. P.;Wu, P. T.; Jenekhe, S. A. Molecules Chem. Mater., 2008, 20: 4200

    24. [24]

      22. Shen, S. J. Spectral analysis principle. Shanghai: Chemical Technology College of East China Press, 1994: 19

    25. [25]

      [沈淑娟. 波谱分析法. 上海: 华东化工学院出版社, 1994: 19]

    26. [26]

      23. Hao, Y. Y.; Hao, H. T.;Wang, H. Spectrosc. Spectr. Anal., 2004, 24: 1524

    27. [27]

      [郝玉英, 郝海涛, 王华. 光谱学与光谱分析, 2004, 24: 1524)

    28. [28]

      24. Fang, R. C. Solid spectrascopy, Hefei: Press of University of Science and Technology of China, 2008: 61

    29. [29]

      [方容川. 固体光谱 学.合肥: 中国科技大学出版社, 2008: 61]

    30. [30]

      25. Huang, C. H.; Li, F. Y.; Huang,W. Introduction to organic light emitting materials and devices. Shanghai: Fudan University Press., 2005: 27

    31. [31]

      [黄春辉, 李富友, 黄维. 有机电致发光材料与器件 导论. 上海: 复旦大学出版社, 2005: 27]

    32. [32]

      26. Crosby, G. A.; Demas, J. N. J. Phys. Chem. A., 1971, 75: 991

    33. [33]

      27. Garcia, P.; Penuut, J. M.; Hapiot, P.;Wiatgens, V.; Valat, P.;Gander, F.; Dehbouglise, D. J. Phys. Chem. 1993, 97: 513Optical Materials, 2007, 29: 1710

    34. [34]

      29. Hegde, P. K.; Adhikari, A. V.; Manjunatha, M. G.; Poornesh, P.; Umesh, G. Optical Materials, 2009, 31: 1000

    35. [35]

      30. Tong, L. G.; Jian, X. G.;Wang, J. Y. J. Funct. Mater., 2002, 33: 568. [佟拉嘎, 蹇锡高, 王锦艳. 功能材料, 2002, 33: 568]


  • 加载中
    1. [1]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    2. [2]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    3. [3]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    4. [4]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    5. [5]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    6. [6]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    7. [7]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    8. [8]

      Yaqin Zheng Lian Zhuo Meng Li Chunying Rong . Enhancing Understanding of the Electronic Effect of Substituents on Benzene Rings Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 193-198. doi: 10.12461/PKU.DXHX202406119

    9. [9]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    10. [10]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    11. [11]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    12. [12]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    13. [13]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    14. [14]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    15. [15]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    16. [16]

      Xiangchun Li Wei Xue Xu Liu Wenyong Lai . Research and Practice on the Cultivation of Innovation Ability of Chemistry Graduate Students in Electronic Information Universities: A Case Study of Nanjing University of Posts and Telecommunications. University Chemistry, 2024, 39(6): 55-62. doi: 10.3866/PKU.DXHX202310018

    17. [17]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    18. [18]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    19. [19]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    20. [20]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

Metrics
  • PDF Downloads(1449)
  • Abstract views(2699)
  • HTML views(73)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return